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a b s t r a c t

Diversity within base classifiers has been recognized as an important characteristic of an ensemble
classifier. Data and feature sampling are two popular methods of increasing such diversity. This is
exemplified by Random Forests (RFs), known as a very effective classifier. However real-world data
remain challenging due to several issues, such as multi-class imbalance, data redundancy, and class
noise. Ensemble margin theory is a proven effective way to improve the performance of classification
models. It can be used to detect the most important instances and thus help ensemble classifiers to
avoid the negative effects of the class noise and class imbalance. To obtain accurate classification
results, this paper proposes the Ensemble-Margin Based Random Forests (EMRFs) method, which
combines RFs and a new subsampling iterative technique making use of computed ensemble margin
values. As for comparative analysis, the learning techniques considered are: SVM, AdaBoost, RFs and the
Subsample based Random Forests (SubRFs). The SubRFs uses Out-Of-Bag (OOB) estimation to optimize
the training size. The effectiveness of EMRFs is demonstrated on both balanced and imbalanced
datasets.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning is widely used in solving real-world prob-
lems, including web page ranking [1], collaborative filtering [2],
entity recognition [3], speech recognition [4] and remote sens-
ing [5]. Data classification is a major research area in machine
learning [6,7]. Its starting point is a set of observations described
by features and associated with a class, thanks to some spe-
cific knowledge. Then, a classification model is developed, gen-
erally assuming that all these class-labeled features are drawn
from a set of probability distributions, one for each class. Finally,
this classification model displays the class membership of new
instances [8].

Among the numerous learning approaches, we are concerned
here with ensemble learning, which provides effective methods
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to develop accurate classification systems [9,10]. Accurate binary
classifiers are obtained by aggregating weak classifiers which are
only slightly better than a random guess [11]. And aggregation
has also the capacity to increase classifiers’ generalization abil-
ity [11]. Ensemble learning approaches could be addressed at the
data level, the feature level or in how classifiers are combined.

We focus on Random Forests (RFs) [12] as their outstanding
performance makes it receive more and more attention [13–15].
RFs are a set of decision trees, that are combined through a
majority vote. Each decision tree is trained on a reduced number
of samples having a reduced number of features, the latter could
be the square root or the logarithm of the number of available
features [16]. Both samples and features are drawn randomly
from the training set. A practical asset is that it runs efficiently on
large database handling thousand of input variables with reduced
training time.

Ensemble diversity is a property of an ensemble of classi-
fiers with respect to a set of data. It has been recognized as an
important characteristic [10,17–19]. Diversity accounts for the
amount of statistical independence of classifiers [20]. It accounts
to how much incorrect decisions of some classifiers increase the
variance and not the bias error of the ensemble classifier. In other
words, ensemble learning is very effective, mainly because base
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classifiers have different biases [8,11]. And we are addressing this
challenging issue, yielding more diverse decision trees, thanks to
new training procedures.

In [13], the process leading to new features specific to each
randomly selected subset of samples is three-fold. First features
are randomly partitioned into subsets generating a partitioned
feature space. Each feature subspace is then reduced by applying
Principal Component Analysis (PCA) on the randomly selected
samples. Finally, all reduced feature subspaces are merged into
a single reduced feature space. The collection of these selected
samples and their modified features are used to train modified
RFs. In [21], a Convolutional Neural Network (CNN) produces a
nonlinear mapping of features with which RFs are trained. Both
resulting classifiers have increased diversity and performance.

However, when challenged with some issues, such as class
noise [22] or multi-class imbalance [23], it seems more appro-
priate to increase the diversity of an ensemble model at the
data level and actually to use data sampling techniques [9]. The
two following techniques presented in [24], exemplify how data
sampling technique addresses the class imbalance. In a binary
context of class imbalance, the Balanced Random Forests algo-
rithm (BRF) trains each decision tree using an even number of
samples drawn from each of the two class. The Weighted Random
Forests algorithm (WRF) assigns to each class a weight model-
ing a misclassification cost being higher for the minority class.
WRF has similar performances to BRF but reduced computational
efficiency. Bernard et al. proposed a Dynamic Random Forest
(DRF) [25]. DRF is an adaptive learning procedure where each new
tree is expected to best complement the already learned trees.
The adaptivity stems both from a weight-based resampled train-
ing data and from a randomly selected number of features taking
into account a measure of feature information. However, in con-
trast to RFs, the trees in this method are no longer independent
and the resulting classifier may lack class noise robustness.

Subsample based methods have proved to have higher ensem-
ble diversity, and they have been used in many fields [26–29]
with various subsampling ratios (i.e. the number of bootstrap
samples to the number of available samples) and using two
different sampling techniques: with or without replacement. On
average, [30] notes that the behavior of an ensemble classifier for
which samples are drawn with replacement is the same as when
there is no replacement on the condition that the subsampling
ratio is being modified according to a specific nonlinear map-
ping. The common choice is 50% without replacement, which is
approximately equivalent to 100 % with replacement (as in bag-
ging). Decreasing this subsampling ratio can reduce the bias and
variance as shown by [31]. Addressing a very large database, [32]
has achieved good performance with a subsampling ratio as small
as 0.5% which indeed saves training time. Studying the impact
of the subsampling ratio without replacement, [33] shows that
depending on the dataset, increased generalization performance
is sometimes obtained with a ratio of 20% or of up to 60% or
even 80%. To select that ratio, they advise using the Out-Of-Bag
(OOB) estimation base method, whose statistical properties have
been studied in [34]. Unfortunately, when addressing imbalanced
datasets, a bias towards the majority class may still occur.

Subsampling techniques can be improved using ensemble
margin theory. The concept of margin was first proposed by Vap-
nik, who applied it to build Support Vector Machines (SVM) [35].
Ensemble margin consists in assigning to each sample a value
named margin which models its importance. This has been used
in class noise filtering [22], instance selection [36], [37], feature
selection [38] and classifier design [39], [40], [41]. Taking into
account such margin information helps to address several issues
such as redundancy, class noise, and class imbalance. Ensemble
margin theory can be used to detect the most important instances

and thus help ensemble classifiers to avoid the negative effects of
redundant or noisy samples.

The contribution of this paper is to propose a novel method
named Ensemble-Margin based Random Forests method (EMRFs).
Two improvements are done upon RFs: samples are selected
according to their margin values, and ensemble diversity has been
increased. In our previous work [19], the classification of imbal-
anced multi-class datasets was addressed by combining bagging
with the computation of a margin. Although both methods are
based on the margin value, there exist some big differences (1)
improvements are applied to RFs instead of bagging as RFs is
known to be more efficient (2) the technique addressing the
imbalance issue is the Synthetic Majority Oversampling Tech-
nique (SMOTE) [42,43] instead of an undersampling technique (3)
balanced datasets are here also addressed, whereas in [19] only
imbalanced datasets were addressed. As for comparative analysis,
the learning techniques used are: SVM [44], AdaBoost [45], RFs
and the Subsample based Random Forests (SubRFs). The latter
uses Out-Of-Bag (OOB) estimation to optimize the training size. In
an experimental study, it is shown that the proposed algorithm is
a clear enhancement of RFs and SubRFs, especially when applied
to imbalanced data sets.

The rest of the paper is organized as follows. In Section 2,
the ensemble margin theory is first presented, then an evaluation
method of the instance importance based on ensemble margin is
proposed. The EMRFs are proposed in Section 3. The comparative
analysis showing the effectiveness of the new algorithm and
a study on hyper-parameters are presented in Section 4 and
discussed in Section 5. Finally, the conclusions are summarized
in Section 6.

2. Evaluation of the data significance based on ensemble
margin

2.1. Ensemble margin

Measuring the margin helps designing classifiers that are more
robust to input perturbations and have better generalization
properties. The margins can be defined into two main ways:
sample margin and hypothesis margin [46]. The sample margin
is defined as the distance between the feature vector and the
decision boundary induced by a classifier. For example, SVM [35]
aims to find the separating hyperplane with the sample margin.
On the other hand, the hypothesis margin requires the exis-
tence of a distance measure on the hypothesis class, it measures
how much the hypothesis can travel before it hits a feature
vector without changing the way it labels any of the sample
points. This definition requires a distance measure between clas-
sifiers [38], [46]. AdaBoost is an example of ensemble classifier
using such a hypothesis margin [45].

When a large number of classifiers are available, margin can
also be defined using the classifiers’ predictions and such a metric
is called ensemble margin. The ensemble margin considered in
this paper is introduced by Shapire et al. [47] and redescribed
here as Eq. (1). Let us define some notations before,

• (x, y) is an instance, with x as a vector with feature values
and y as a label being one of the C class labels,
• hj(x) are the J labels predicted by the J available classifiers,
• π ↦→ δ(π ) is a function mapping any predicate π into 1 or

0 depending on whether π is true or not,
• v(x, c) =

∑J
j=1 δ(hj(x) = c) is the number of classifiers

predicting the label c when the feature vector is x,

This ensemble margin is defined as

margin(x, y) =
1
J

(
v(x, y)−max

c ̸=y
v(x, c)

)
(1)
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Fig. 1. Samples (◁ in green and ▷ in blue) are classified by three classifiers
indicated by their decision boundaries (black straight lines). Samples on the
left and on the right have a significance Wi = 0 whereas samples in between
decision boundaries are indicated with a red plus + as they have a significance
Wi = 1.

Note that a positive value of margin(x, y) indicates that this
instance is correctly classified by the set of J classifiers when
using a majority vote. A negative value indicates misclassification.
When all base classifiers are unanimous, margin(x, y) = 1 or
margin(x, y) = −1, margin(x, y) ranges from −1 to 1.

2.2. Assessing the significance of a sample

Ensemble margin is used here to assess the significance of a
sample. The rationale is that for a given sample, when different
classifiers do not agree on a label, the ensemble margin tends to
be lower in magnitude and the sample is likely to be more useful
in terms of classification. The significance of a sample (x, y) is
defined as:

W (x, y) = 1− |margin(x, y)| (2)

The significance can be rewritten as:

W (x, y) = 1−
1
J

[
v(x, h̃1(x))−min

(
v(x, y), v(x, h̃2(x))

)]
(3)

where h̃1(x) and h̃2(x) are the top two labels in terms of number
of classifiers:

h̃1(x) = argmax
c

v(x, c) and h̃2(x) = argmax
c ̸=h̃1(x)

v(x, c)

Assuming the number of classifiers predicting each label are
listed and sorted in a decreasing order, W (x, y) can be thought
as the normalized difference of the two top numbers of classi-
fiers or as the normalized difference between the top number of
classifiers and the number of classifiers selecting the true label,
depending on whichever is the greatest value.

When there are only two classes, the significance can be
rewritten as:

W (x, y) = 1−
1
J

[
v(x, h̃1(x))− v(x, h̃2(x))

]
(4)

Then W (x, y) can be thought of as the normalized difference of
the two top numbers of classifiers.

Proof of Eq. (3) is in two steps.

• Let us first assume that the true label is the majority selected
label, h̃1(x) = y, then

W (x, y) = 1−
⏐⏐⏐v(x, h̃1(x))− v(x, h̃2(x))

⏐⏐⏐
by definition of W in Eq. (2) and because y = h̃1(x)

W (x, y) = 1−
[
v(x, h̃1(x))− v(x, h̃2(x))

]
because v(x, h̃2(x)) ≤ v(x, h̃1(x))

which implies that the absolute value is not sign changing

W (x, y) = 1−
1
J

[
v(x, h̃1(x))−min

(
v(x, y), v(x, h̃2(x))

)]
because v(x, h̃2(x)) ≤ v(x, h̃1(x)) = v(x, y)

• If this assumption is not true, h̃1(x) ̸= y, then

W (x, y) = 1−
⏐⏐⏐v(x, y)− v(x, h̃1(x))

⏐⏐⏐
by definition of W in Eq. (2) and because max

c ̸=y
v(x, c)

= v(x, h̃1(x))

as h̃1(x) ̸= y and v(x, h̃1(x)) ≥ max
c

v(x, c)

W (x, y) = 1−
[
v(x, h̃1(x))− v(x, y)

]
because v(x, h̃1(x)) ≥ v(x, y)

which implies that the absolute value is here sign changing

W (x, y) = 1−
1
J

[
v(x, h̃1(x))−min

(
v(x, y), v(x, h̃2(x))

)]
because v(x, y) ≤ v(x, h̃2(x))

as the top value v(x, h̃1(x)) is not available since y ̸= h̃1(x)

Proof of Eq. (4) is also in the same two steps.

• Let us first assume that h̃1(x) = y,
then v(x, h̃2(x)) ≤ v(x, h̃1(x)) = v(x, y) and

min
(
v(x, h̃2(x)), v(x, y)

)
= v(x, h̃2(x))

• If this assumption is not true, h̃1(x) ̸= y,
then since there are only two classes, h̃2(x) = y and

min
(
v(x, h̃2(x)), v(x, y)

)
= v(x, h̃2(x))

2.3. Significance based data ordering

Let us consider a training set denoted as S =
{
(x1, y1), . . . ,

(xN , yN )
}
, where xi is a vector with feature values and yi is the

value of the class label. The significance of a training sample
(xi, yi) is assessed by:

Wi = W (xi, yi) = 1−
1
J

⏐⏐⏐⏐v(xi, yi)−max
c ̸=yi

v(xi, c)
⏐⏐⏐⏐ (5)

An example (Fig. 1) is used to show in a two-class setting,
the relationship between the predicted labels of different samples
by the three different classifiers and their significance values Wi.
Samples are shown as green left triangles or blue right triangles
depending on their labels. Three different decision boundaries
are shown as black straight lines, they are related to the three
different classifiers. Significant samples are indicated with a red
plus. Indeed as indicated by Eq. (4), in this two-class setting with
only three classifiers, Wi is a two-value metric: Wi = 0 when
classifiers are unanimous and Wi = 1 when they are not.
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The significance metric is designed for applications where a
large number of base classifiers are available, as this metric would
then yield many intermediate values ranging from 0 to 1. This
metric measures disagreement among classifiers and hence is
able to indicate to what extent a sample is near a class decision
boundary. Because samples near such boundaries are known to
be important in classification, the main idea of the proposed
method is to train new base classifiers that focus on significant
samples, as measured by Wi. Technically the algorithm consists in
reordering the training samples according to the decreasing order
of Wi. The different base classifiers are trained on bootstrap sets
using subsets of the reordered training dataset so as to preserve
diversity.

3. Ensemble-margin based random forests (EMRFs)

The Ensemble-Margin based Random Forests (EMRFs) method
is proposed to find a more accurate and diverse classifier. It has
three main steps:

1. Computing the significance of training samples using the
available base classifiers.

2. Constructing bootstrap subsets of the training set while
focusing on significant samples and preserving diversity.

3. Training base classifiers on those subsets with random
feature selection as in the traditional RFs.

The first step of EMRFs consists of training a robust ensemble
classifier, namely the random forests, using the whole training set.
The significance Wi of each training instance is then calculated
using Eq. (5). And the training set is ordered according to the
decreasing order of Wi, the resulting new training dataset is
denoted as S ′ = {(x′1, y

′

1), . . . , (x
′

N , y′N )}. Note that i ↦→ W (x′i, y
′

i)
is a decreasing sequence.

In the second step, the algorithm aims to explore the most
significant samples while preserving diversity. Let t be an index
ranging from 1 to T . The evolving resampling rate at considered
here is periodic and has over the first period, an arithmetic
progression.

∆a =
1
Ta

and at =
1+mod(t − 1, Ta)

Ta
where mod(a, b) stands for the modulo operator, that is the re-
mainder after division of one number by another; ∆a is an EMRFs
hyper-parameter ranging from 0 to 1 and constrained to be an
integer inverse; Ta is the period, determined by ∆a. Note that at
is ranging from ∆a to 1 and that ∆a is the initial resampling rate:
a1 = ∆a.

With at and as t ranges from 1 to T , we define T training
subsets:

S̃ ′t = {(x
′

i, y
′

i)|i ≤ Nat}

T new bootstrap training sets containing ⌊Nat⌋ samples are drawn
with replacement from these subsets:

St ∼ B⌊Nat ⌋
(
S̃ ′t

)
Here are some examples to illustrate the definition of at and

of the yielded subsets.

• If T = 12, a = 0.1 ∼ 1 and N = 100, then the T resampling
rates are: a1 = 0.1, a2 = 0.2, . . . , a10 = 1, a11 = 0.1,
a12 = 0.2. The T subsets S̃t are the first 10, 20, . . . ,100,10,
20 first samples of the reordered training set (Fig. 2(a)).
• If T = 11, a = 0.25 ∼ 1 and N = 100, then the T

resampling rates are: a1 = 0.25, a2 = 0.5, a3 = 0.75, . . . ,
a10 = 0.5, a11 = 0.75. The T subsets S̃t are the first 25, 50,
75,100, . . . ,50, 75 first samples of the reordered training set
(Fig. 2(b)).

• If a = 1 and T = 10, and N = 100, then for all t , S̃t = S and
St are bootstrap training sets built as in the classical RFs.

Fig. 3 presents the flowchart of the EMRFs. Finally, the re-
sults of a series of individual classifiers, generated by repeating
the aforementioned steps several times, are fused according to
majority vote rule.

Algorithm 1 Ensemble-Margin based Random Forests

1: Training phase
2: Input:
3: Training set S = (x1, y1), (x2, y2, ), · · · , (xN , yN );
4: Number of training instances N;
5: Number of classifiers T ;
6: Ensemble creation algorithm ζ ;
7: Initial resampling rate ∆a;
8: Process:
9: The new ensemble classifier is set as containing no classifiers:

E ← ∅
10: Construct an ensemble classifier with all training data

(xi, yi) ∈ S
11: Compute the significance of each sample (xi, yi) as measured

by Wi.
12: Order the training samples in descending order of Wi, the

ordered set is denoted as S ′.
13: for t=1:T do
14: Obtain a new training set St by performing a bootstrap on

the first Nat samples of S ′.
15: Train a decision tree ht = ζ (St ) using St .
16: Add this new classifier: E ← E ∪ ζt
17: end for
18: Complete E with the majority vote as the pooling rule.
19: Output:
20: The ensemble classifier E.

1: Prediction phase
2: Inputs:
3: The ensemble E = {ht}

T
t=1;

4: A new sample x∗.
5: Output:
6: Class label y∗ = argmax{1≤c≤C}

∑T
t=1 δ( ht (x∗) = c )

4. Experiment

4.1. Experiment settings

In these experiments, RFs method is used to create an en-
semble classifier involving Classification and Regression Trees
(CART) [12] as base classifiers to get the margin values of the
instances of the original data set. Evaluation of the performance
of the proposed EMRFs is carried out using 5-fold cross-validation
(CV). EMRFs are compared to SVM, AdaBoost, RFs and SubRFs
which is a refined version of RFs, denoted as SubRFs [33,48].
Ensembles size T is set to 500, a number chosen to be higher
than what is usually needed to deal with publicly available clas-
sification problems. The influence of the ensemble size for all
the methods is further discussed in Section 4.6.1. The range
of sampling parameter a is set to 0.1 ∼ 1 (i.e. ∆a = 0.1).
The influence of ∆a for EMRFs is presented in Section 4.6.2.
R-project package, ‘‘randomForest’’ is used to implement the pro-
posed methodology and two reference schemes in the experi-
ment. For all the RFs based methods, the number of features
randomly sampled as candidates at each split is set to the square
root of the number of features. Other parameters are kept to
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Fig. 2. Two examples to illustrate the process of the base classifier building along with the change of the parameter a. The training samples have been sorted in
ascending order according to their margin values.

Fig. 3. Flowchart of ensemble-margin based random forests classification.

their default values in R-project package (https://cran.r-project.
org/web/packages/randomForest/index.html). The SVM and Ad-
aBoost methods are implemented using the ‘‘e1071’’ and ‘‘ad-
abag’’ packages (https://cran.r-project.org/web/packages/e1071/
index.html and https://cran.r-project.org/web/packages/adabag/).
The kernel function used for SVM is the radial basis function.
Both the gamma and the cost value used in the kernel are jointly
selected so as optimize the average performance obtained with
CV. The optimized values are searched respectively within [2−8 :
28
] and [21

: 25
].

4.2. Evaluation methods

The performance measures adopted in the experiments are:
Overall Accuracy, Minimum Accuracy Per Class and (Kohavi-
Wolpert) diversity defined in [49] and denoted as KW.

• Minimum Accuracy Per Class, is the percentage of in-
stances correctly classified in the class for which this per-
centage is the least. Let nii and nij represent the true predic-
tion of the ith class and the false prediction of the ith class
into jth class respectively. The Minimum Per Class Accuracy
for class i can be defined as:

Minimum Per Class Accuracy = min
i

nii∑C
j=1 nij

(6)

where C stands for the number of classes. Note that nii∑C
j=1 nij

is called the Per Class Accuracy or also Recall. And [50]
strongly recommends using this performance measure Re-
call to evaluate classification algorithms, especially when
dealing with multi-class imbalance problems.

https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/adabag/
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Table 1
Descriptions of 15 UCI datasets and 8 high-dimensional microarray datasets.

Datasets No.of instances Variables Classes IR

Lo
w
-d

im
en

si
on

al
da

ta
se
ts

Balance* 600 4 3 5.65
Breast 680 9 2 1.92
Breast-wdbc 460 30 2 1.67
Clean 400 166 2 1.4
Monk3 500 6 2 1.11
Optdigit 2000 64 10 1.24
Pendigit 4000 16 10 1.21
Segment 2000 19 7 1.05
Sonar 200 60 2 1.2
Soybean* 560 35 15 4.84
Statlog 2000 36 6 2.54
UrbanLandCover* 300 147 7 5.55
Waveform40 4000 21 3 1.03
Wilt* 4000 5 2 17.69
Wine 160 13 3 1.39

H
ig
h-

di
m
en

si
on

al
da

ta
se
ts

Alon 62 2000 2 1.82
Christensen* 217 1413 3 5.95
Golub 72 7129 2 1.88
Gravier 168 2905 2 1.95
Khan* 63 2308 4 2.88
Pomeroy 60 7128 2 1.86
Shipp* 77 7129 2 3.05
Su 102 5565 4 1.22

• Overall Accuracy is a performance metric giving the same
weight to each class overlooking the number of samples
assigned to each class:

Overall Accuracy =

∑C
i=1 Per Class Accuracyi

C
(7)

• KW Diversity presented in [49] and defined in [51] by the
following equation:

KW = −
1

NT 2

N∑
j=1

t(xj)(T − t(xj)) (8)

where N is the number of samples in the training set, T is
the number of classifiers, and t(xj) is the number of classi-
fiers having predicted the correct label of xj. A higher value
of KW indicates a higher diversity. Note that this measure
gives also the same weight to each class.

4.3. Datasets

The proposed algorithm is applied on 15 UCI datasets pub-
lished in [52] and 8 high-dimensional microarray datasets (https:
//github.com/ramhiser/datamicroarray/tree/master/data). The
chosen datasets include 12 multi-class and 11 binary data
(Table 1). Those data sets deal with different machine learn-
ing issues in terms of sizes and features. Table 1 summarizes
the properties of the selected datasets, including the number
of classes, the number of attributes, the number of examples
and the Imbalance Ratio, denoted as IR. IR is the ratio of the
size of the most populated class to the size of the least pop-
ulated class. The asterisk (*) indicates high IR in this dataset.
5-fold CV is done on each dataset. It is done during oversam-
pling as [43] recommends especially for imbalanced datasets: for
each fold, the new instances are generated using only instances
from the corresponding training set. Note that this CV-technique
is applied to multi-class datasets extending the binary context

Table 2
Overall Accuracy of the SVM, AdaBoost, standard RFs, SubRFs and the proposed
method EMRFs.

Datasets SVM AdaBoost RFs SubRFs EMRFs

Balance 80.33(2.0) 78.57(5.0) 80.07(3.0) 78.70(4.0) 81.33(1.0)
Breast 96.44(3.0) 96.15(4.0) 96.85(2.0) 95.85(5.0) 97.79(1.0)
Breast-wdbc 96.87(2.0) 95.91(3.0) 95.22(4.0) 94.74(5.0) 97.39(1.0)
Clean 90.05(1.0) 84.15(2.0) 82.35(4.0) 76.85(5.0) 82.75(3.0)
Monk3 95.80(5.0) 97.24(2.0) 97.00(3.0) 96.92(4.0) 98.60 (1.0)
Optdigit 96.67(4.0) 96.95(2.0) 96.72(3.0) 96.03(5.0) 97.15(1.0)
Pendigit 99.30(1.0) 98.19(3.0) 98.02(4.0) 97.47(5.0) 98.55(2.0)
Segment 90.47(5.0) 97.69(1.0) 96.80(3.0) 96.07(4.0) 97.25(2.0)
Sonar 83.00(2.0) 81.70(3.0) 79.40(4.0) 78.10(5.0) 84.00(1.0)
Soybean 92.50(2.0) 91.00(5.0) 92.39(3.0) 91.71(4.0) 93.75(1.0)
Statlog 90.50(2.0) 90.19(4.0) 90.26(3.0) 89.55(5.0) 90.58(1.0)
UrbanLandCover 75.93(5.0) 79.87(4.0) 83.33(3.0) 85.33(2.0) 86.00(1.0)
Waveform40 84.71(2.5) 83.95(5.0) 84.65(4.0) 84.71(2.5) 85.75(1.0)
Wilt 97.08(5.0) 98.13(2.0) 97.90(3.0) 97.57(4.0) 98.23(1.0)
Wine 97.88(2.0) 95.00(4.0) 96.12(3.0) 93.59(5.0) 98.75(1.0)

Average 91.17 90.98 91.14 90.21 92.52
Rank 2.90 3.27 3.27 4.30 1.27

Table 3
Minimum Accuracy Per Class of the SVM, AdaBoost, standard RFs, SubRFs and
the proposed method EMRFs.

Datasets SVM AdaBoost RFs SubRFs EMRFs

Balance 28.57(3.0) 41.66(2.0) 25.96(4.0) 21.26(5.0) 44.94(1.0)
Breast 95.54(2.0) 95.21(3.0) 95.18(4.0) 93.63(5.0) 97.55(1.0)
Breast-wdbc 93.52(3.0) 94.90(2.0) 92.89(4.0) 92.17(5.0) 96.84(1.0)
Clean 87.28(1.0) 81.67(3.0) 75.40(4.0) 66.25(5.0) 81.99(2.0)
Monk3 94.51(5.0) 96.64(2.0) 96.01(3.0) 95.29(4.0) 97.91(1.0)
Optdigit 93.35(4.0) 94.39(2.0) 93.54(3.0) 93.03(5.0) 95.11(1.0)
Pendigit 98.45(1.0) 96.04(3.0) 94.47(4.0) 93.65(5.0) 97.39(2.0)
Segment 79.69(5.0) 94.77(2.0) 93.07(3.0) 91.55(4.0) 94.81(1.0)
Sonar 75.34(3.0) 77.15(2.0) 72.46(4.0) 71.27(5.0) 82.14(1.0)
Soybean 79.80(2.0) 76.85(3.0) 75.42(5.0) 76.08(4.0) 85.58(1.0)
Statlog 74.81(2.0) 67.99(5.0) 71.57(3.0) 71.56(4.0) 77.37(1.0)
UrbanLandCover 57.10(5.0) 66.35(4.0) 69.24(3.0) 71.88(2.0) 72.81(1.0)
Waveform40 81.29(2.0) 80.96(3.0) 76.88(5.0) 79.50(4.0) 83.72(1.0)
Wilt 70.19(5.0) 89.48(1.0) 84.73(2.0) 84.47(3.0) 80.97(4.0)
Wine 96.85(2.0) 92.31(4.0) 93.05(3.0) 88.98(5.0) 97.22(1.0)

Average 80.42 83.09 80.66 79.37 85.76
Rank 3.00 2.73 3.60 4.33 1.33

considered in [43]. Furthermore, to prevent the random oversam-
pling method from overfitting, the SMOTE technique presented
in [42] is adopted in the experiment on the more imbalanced
datasets indicated with an asterisk, as a pre-processing task
common to all learning techniques.

4.4. Results

Table 2 shows the Overall Accuracy of the SVM, AdaBoost, RFs,
SubRFs, and the proposed EMRFs. This table shows that the new
scheme outperforms the reference methods. The best increases
of the novel method respectively are up to 11%, 6%, 4% and
6%. Moreover, the proposed method is effective for not only the
datasets of high quality but also the datasets of a complicated
space distribution such as the imbalanced data Balance, Soybean,
UrbanLandCover and Wilt. Although the SMOTE is performed to
balance the class sizes of these difficult datasets in the prepro-
cessing step, the operation has a high risk of producing artificial
noise. The EMRFs always yield the best results, i.e. the proposed

https://github.com/ramhiser/datamicroarray/tree/master/data
https://github.com/ramhiser/datamicroarray/tree/master/data
https://github.com/ramhiser/datamicroarray/tree/master/data
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Table 4
Ensemble diversity of the AdaBoost, standard RFs, SubRFs, and the proposed
method EMRFs.

Datasets Diversity

AdaBoost RFs SubRFs EMRFs

Balance 0.1586 0.1143 0.1115 0.1691
Breast 0.0618 0.0371 0.0514 0.0639
Breast-wdbc 0.0918 0.0535 0.0654 0.1096
Clean 0.2176 0.1836 0.1897 0.2288
Monk3 0.1393 0.0732 0.1113 0.1520
Optdigit 0.0232 0.0176 0.0202 0.0283
Pendigit 0.0405 0.0142 0.0164 0.0328
Segment 0.0653 0.0317 0.0367 0.0525
Sonar 0.2219 0.1964 0.2019 0.2386
Soybean 0.0339 0.0157 0.0193 0.0233
Statlog 0.0873 0.0379 0.0394 0.0591
UrbanLandCover 0.0607 0.0498 0.0566 0.0675
Waveform40 0.1573 0.1181 0.1208 0.1492
Wilt 0.0742 0.0324 0.0360 0.1484
Wine 0.1363 0.1047 0.1398 0.1775

Average 0.1046 0.0720 0.0811 0.1134

method has better noise robustness as compared to SVM, Ad-
aBoost, RFs and SubRFs, and is more suitable to deal with the
imbalance problem.

The Minimum Accuracy Per Class of each approach is shown in
Table 3. This table shows that the proposed method is effective in
increasing the accuracy of classifying the most difficult class for
most data sets when compared with the other schemes. Difficult
class instances have typically low margin values and hence obtain
more attention, whereas instances having high margin values are
potentially redundant or noisy instances.

Table 4 shows the ensemble diversity of the AdaBoost, stan-
dard RFs, SubRFs, and EMRFs. EMRFs still yields the best result
and significantly outperforms RFs and SubRFs. Indeed, as the
base classifiers are built using training sets of different sizes
and having different data distributions, the resulting ensemble
classifier is expected to have increased ensemble diversity.

4.5. Statistical analysis

The Nemenyi statistical test presented in [53], is used here
to assess, with high probability, that the measured performances
are evidence of differences in performance among some of the
tested learning techniques. This test is a post-hoc test as it is used
several times to gather more information. It infers a possible sig-
nificant difference between two techniques from the difference of
their mean ranks in Overall Accuracy and in Minimum Accuracy
Per Class. These mean ranks are shown in Tables 2 and 3. The null-
hypothesis can be rejected and a claim can be assessed when the
mean rank difference is greater than a threshold called the Critical
Difference (CD) set in the BonferroniDunn:

CD = qα

√
k(k+ 1)

6N
(9)

where α, the significant level is here set to 0.05 and qα is based
on the Studentized range statistic divided by

√
2, [53]. N is the

number of datasets, and k is the number of algorithms. Note that
for this experiment, CD = 1.442. We use the plots described
by [53] to present the graphical representation results of the
Bonferroni-Dunn test in Fig. 4: the comparative performances of
the tested learning techniques are shown both for the Overall
Accuracy (above) and the Minimum Accuracy Per Class (below).

Table 5
Overall Accuracy and Minimum Accuracy Per Class of the proposed method
EMRFs with the sampling range a = 0.1 ∼ 1 and optimized value respectively.

Datasets Overall Accuracy Minimum Accuracy Per Class

a = 0.1 ∼ 1 Optimized a a = 0.1 ∼ 1 Optimized a

Balance 81.33 85.50 44.94 47.94
Breast 97.79 97.94 97.55 97.55
Breast-wdbc 97.39 98.04 96.84 96.84
Clean 82.75 87.25 81.99 85.24
Monk3 98.60 98.90 97.91 97.96
Optdigit 97.15 97.40 95.11 95.38
Pendigit 98.55 98.62 97.39 97.45
Segment 97.25 97.60 94.81 95.61
Sonar 84.00 88.50 82.14 84.50
Soybean 93.75 93.75 85.58 85.87
Statlog 90.58 91.22 77.37 79.94
UrbanLandCover 86.00 86.25 72.81 77.08
Waveform40 85.75 85.95 83.72 84.48
Wilt 98.23 98.52 80.97 84.74
Wine 98.75 98.75 97.22 98.44

Average 92.52 93.61 85.76 87.27

4.6. Influence of model parameters on classification performance

4.6.1. Influence of the ensemble size
In order to study the influence on random forests construction

of the ensemble size, T (i.e. the total number of classifiers), we
present in Figs. 5 and 6 the Overall Accuracy and Minimum
Accuracy Per Class with respect to T ranging from 10 to 500. From
both figures, we can see that the EMRFs accuracy curve is above
the SVM, AdaBoost, RFs and SubRFs curves in most datasets.
RFs method statistically has better behaviors than SubRFs. The
SubRFs scheme has the risk of losing useful information. Note
that for most databases and much in the same way as for Ad-
aBoost, RFs, and SubRfs, EMRFs accuracy reaches, at some point,
a horizontal asymptote. Therefore T should not be considered as
hyper-parameter.

4.6.2. Influence of the initial resampling rate, ∆a
This section aims to study the influence of the initial re-

sampling rate ∆a on the EMRFs classification performance. In
this experiment, T is set to 500 and ∆a ranges from 1

40 to 1.
Fig. 7 exhibits the two optimal initial resampling rates, ∆ao and
∆am, yielding the best classification results on all the data sets
according to respectively the Overall Accuracy and the Minimum
Accuracy Per Class. The optimal Overall Accuracy and Minimum
Accuracy Per Class are indicated above each black triangle. Table 5
presents for all the datasets, the Overall Accuracy and Minimum
Accuracy Per Class achieved by EMRFs, using respectively ∆a =
0.1, ∆a = ∆am and ∆a = ∆ao. Note that the values using
∆a = 0.1 are those of the last column of Table 2, and the other
values are those indicated in Fig. 7. From Fig. 7, it appears that
for most datasets, ∆ao and ∆am are similar. And from Table 5,
accuracy is improved when ∆a is tuned. The Overall Accuracy is
increased up to 4% for the following datasets: Balance, Clean and
Sonar. The Minimum Accuracy Per Class is increased by 4% for the
UrbanLandCover dataset.

4.6.3. Performance of EMRFs on high-dimensional data
The previous experiment focuses on the accurate classification

of the low-dimensional datasets. To further evaluate the effec-
tiveness of the proposed algorithm, we analyze the performance
of EMRFs on high-dimensional microarray datasets (see also Ta-
ble 1). Ensemble methods cannot improve the performance of
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Fig. 4. Comparison of all classifiers against each other with the Nemenyi test.

base classifiers on high-dimensional datasets when the variables
are correlated [54]. The identification and removal of the relevant
variables are very useful to reduce the class-overlap problem.
Hence, those microarray datasets are preprocessed in the first
step of our experiment. The variable importance is evaluated us-
ing the ideas by Breiman et al. [16]. Only the first 1000 important
variables are kept and used for further analysis. The 5-fold CV is
still used to estimate accuracy measures.

Table 6 presents the Overall Accuracy, Minimum Accuracy
Per Class and ensemble diversity of the AdaBoost, standard RFs,
SubRFs and the proposed EMRFs on high-dimensional microarray
datasets. We do not consider SVM in our analyses. SVM does
not perform well in the high-dimensional setting. In addition,
although SMOTE has been adopted to alleviate the class imbal-
ance problem, SVM is still very sensitive to the minority class
instances. It can be observed in Table 6 that EMRFs still outper-
forms the reference ensemble methods. Although RFs has been
reported as having good performance on high dimensional data,
EMRFs is more efficient than RFs when data is preprocessed using
feature importance filter and SMOTE. When compared with the
Adaboost, RFs, and SubRF, the best increases of the EMRFs in
Overall Accuracy are respectively about 3%, 7% and 12%. The
best increases of the proposed method in Minimum Accuracy
Per Class are respectively about 7%, 40% and 31%. Moreover, the
best results of the ensemble diversity are usually achieved with
the proposed method. These positive results can be explained by
the fact that it is suitable to design a random forest model by
using the ensemble margin to define the significance of a sample
to improve the classification accuracy of the high-dimensional
datasets.

5. Discussion

1. When randomly selecting samples, many ensemble clas-
sifiers make use of classical subsampling techniques, re-
sulting in a common data distribution shared by all base-
classifier training sets. Such techniques have shown good
accuracy when dealing with normal datasets. However,
with imbalanced datasets, using a common data distribu-
tion entails the risk of losing important information and

Table 6
Overall Accuracy, Minimum Accuracy Per Class and diversity of the SVM,
AdaBoost, standard RFs, SubRFs and the proposed EMRFs on high-dimensional
microarray datasets.

SVM AdaBoost RFs SubRFs EMRFs

O
ve

ra
ll

Ac
cu

ra
cy

Alon 64.56 80.69(2.0) 80.25(3.0) 75.61(4.0) 81.75(1.0)
Christensen – 98.44(3.0) 100.0(1.0) 97.03(4.0) 99.72(2.0)
Golub 65.31 96.25(2.0) 95.33(3.0) 85.50(4.0) 97.58(1.0)
Gravier 66.09 79.96(1.0) 73.48(4.0) 73.80(3.0) 77.72(2.0)
Khan – 95.92(3.0) 98.58(2.0) 91.44(4.0) 98.72(1.0)
Pomeroy 65.00 67.00(2.0) 60.83(4.0) 61.00(3.0) 67.67(1.0)
Shipp – 94.22(1.0) 92.35(3.0) 87.53(4.0) 93.31(2.0)
Su – 97.05(3.0) 97.95(2.0) 96.65(4.0) 98.45(1.0)

Average – 88.69 87.35 83.57 89.37
Rank – 2.13 2.75 3.75 1.38

M
in
im

um
Ac

cu
ra
cy

Pe
r
Cl
as
s Alon – 70.82(3.0) 71.47(2.0) 62.39(4.0) 71.90(1.0)

Christensen – 90.67(4.0) 100.0(1.0) 99.33(2.0) 97.30(3.0)
Golub – 93.66(2.0) 89.78(3.0) 63.36(4.0) 94.41(1.0)
Gravier – 59.96(2.0) 42.55(3.0) 40.75(4.0) 64.15(1.0)
Khan – 89.78(3.0) 96.07(1.0) 90.00(2.0) 85.67(4.0)
Pomeroy – 44.12(2.0) 8.03(4.0) 30.75(3.0) 48.45(1.0)
Shipp – 89.87(1.0) 87.36(2.0) 85.28(4.0) 85.90(3.0)
Su – 92.43(4.0) 94.79(1.0) 94.12(2.0) 93.70(3.0)

Average – 78.91 73.76 70.75 80.19
Rank – 2.63 2.13 3.13 2.13

D
iv
er
si
ty

Alon – 0.2055 0.1909 0.1948 0.2311
Christensen – 0.0052 0.027 0.1013 0.0803
Golub – 0.1227 0.1692 0.1821 0.1917
Gravier – 0.2187 0.1948 0.1881 0.2381
Khan – 0.0672 0.1247 0.1297 0.1451
Pomeroy – 0.2345 0.2243 0.2182 0.2452
Shipp – 0.1381 0.1722 0.1784 0.2096
Su – 0.176 0.1891 0.1949 0.2178

Average – 0.1460 0.1615 0.1734 0.1949
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Fig. 5. Evolution of the Overall Accuracy according to the ensemble size, T .

failing to identify minority classes. The EMRFs subsampling
technique gives priority to small-margin samples and to
diversity, thereby ensuring that class boundary samples
and minority class samples are more likely to be drawn.

2. When designing ensemble classifiers, the common prac-
tice is to set the size of the training set for each base
classifier according to a trade-off between diversity and

accuracy [20]. Namely increasing the size improves the
accuracy whereas reducing the size improves the diversity.
As opposed to RFs and SubRFs, the EMRFs base classifiers
are trained with datasets of very different sizes, thanks to
an iterative bootstrap technology. The resulting ensemble
classifier yields both an improved diversity and accuracy.
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Fig. 6. Evolution of the Minimum Accuracy Per Class according to the ensemble size, T .

3. EMRFs bears some resemblance with boosting in that each
sample does not receive the same interest. And boosting is
known to be susceptible to class-label noise, see [55], an is-
sue raised by [56] as weights are strongly label-dependent.
On the other hand, Eqs. (3) and (4) show that significance
has only small label-dependency. This provides EMRFs with
more robustness to incorrect labeling.

6. Conclusion

This paper proposes a novel ensemble-margin based random
forests algorithm, named EMRFs. It assigns to each sample a mea-
sure of its significance by collecting information on an already
trained random forests classifier. These assigned measures are
used in an iterative bootstrapping technique to draw diverse sets,
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Fig. 7. Optimal initial-resampling rate a, scaled in percentage, for all the data
sets.

each of them being used to train a base classifier. It is this sig-
nificance metric and this iterative bootstrapping technique that
provide the resulting ensemble classifier with greater accuracy
when dealing with more complex datasets and more robustness
to class-label noise.

To evaluate the effectiveness of the proposed approach, SVM,
AdaBoost, standard random forests and subsampled based forests
are used in a comparative analysis. From this study, we have
emphasized the superiority of the proposed method. The novel al-
gorithm has three advantages: (1) the classification trees trained
by focusing on the informative samples tend to be more accurate
than those obtained by implementing the traditional bootstrap
or the subsampling with optimized training size on original data
(2) the ensemble classifier yields better performance with smaller
ensemble size (3) the method is more effective for the clas-
sification of imbalanced data. The experimental results show
that EMRFs has better performance in terms of Overall Accu-
racy, Minimum Accuracy Per Class and ensemble diversity. As
future research, we plan to extend the margin-based ensemble
framework by studying other iterative resampling rates.
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