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Abstract. As an important natural resource, cropland plays a key role in 
ensuring food safety. In this study, an integral method combining Landsat TM 
imagery and See5 decision-tree software was developed to identify croplands 
by taking Shunyi District, Beijing as the study area. Considering the specific 
topographic conditions, vegetation types and variable climate environment as 
well as growth period of the study area, texture variables, band ratios, digital 
elevation model (DEM) and its derived slope and aspect were added into 
decision tree classification. Finally, the cropland distribution map of Shunyi 
District was derived combining See5 decision tree classification software and 
NLCD mapping tools integrated in the ERDAS environment. An accuracy 
evaluation shows that the overall accuracy is 88.48% and 91.85% using GPS 
sample points and statistical data, separately. The result shows that it is feasible 
to identify croplands using See5 decision-tree classification tool based on the 
Landsat TM imagery. 

Keywords: Band ratios, cropland identification, Landsat TM, See5 decision- 
tree classification, texture analysis. 

1   Introduction 

As an important agricultural resource to ensure food security, it is very essential to 
derive the real and accurate utilization information and spatial distribution of 
croplands to a great degree. Base on such information, farmers can arrange their crop 
planting and decision-makers in the departments of agriculture can make an optimum 
planning for various kinds of crop planting [1]. With the increasing demands, it is 
urgent to find out an effective way for identifying and evaluating the croplands 
especially on a large scale. However, traditional labor-intensive and high-cost 
consuming methods were mainly used in the past. In order to detect the planting 
conditions of croplands, surveyors must physically survey the information, which is 
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time consuming and subject to considerable errors. Therefore, the mapping of 
cropland information is very essential for knowing the planting area, spatial 
distribution, land cover and land use, field management, etc. 

As a result, to derive related information of croplands is very necessary. With the 
increasing advances of earth-observing satellite technology, remote sensing 
technology has been widely used to monitor growth conditions, yield estimation, 
drought/cold damage, etc [2-4]. However, in previous studies moderate spatial 
resolution imagery such as MODIS, AVHRR, ERTS-1were primarily used to identify 
and extract cropland information [5-7]. However, due to the influence of subpixel 
heterogeneity and mixed pixel for coarse resolution sensors and narrow swath, such as 
MODIS, AVHRR, they may result in significant errors in cropland area estimation. 
Therefore, those remotely sensed images with higher resolution have to be utilized in 
order to derive more accurate cropland information. 

The primary objective of this study was to evaluate the potential of the Landsat TM 
imagery to identify cropland information by integrating See5 decision-tree software in 
Guangxi Province, China. In addition, we also want to evaluate the classification 
efficiency and accuracy of See5 classifier by field survey data and statistical data. 

2   Description of the Study Area 

Shunyi District is located in the north-east suburbs of Beijing, about 30 kilometers 
from the centre, at latitude 40°00′-40°18′ North and longitude 116°28′-116°58′ East. 
The total area is 1,021 km2 and it has a population of 593,000, of which 419,000 are 
permanent agricultural residents (Beijing Statistical Office, 2001). Shunyi has a warm 
temperate wet continental monsoon climate. Average annual temperature is 11.5 °C, 
that in January 4.9 °C, and in July 25.7 °C. The lowest temperature in January is -19.1 
°C and the highest in July 40.5 °C. The frost-free period lasts around 195 days. 
Annual sunshine duration is 2,750 hours, average annual relative humidity about 
50%. Average annual precipitation is about 625 mm, of which 75% falls in summer. It 
has a fertile soil ranging from sandy to loamy soils. Fig. 1 shows the spatial location 
and administration divisions of Shunyi District. 

 

Fig. 1. Spatial location and administration divisions of Shunyi District, Beijing 
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3   Methodology 

3.1   Data Sources and Preprocessing 

We acquired Landsat TM imagery of the study which retain as much of the original 
radiometric and geometric properties as possible and they were just systematically 
processed by radiometric and geometric corrections. Therefore, accurate radiometric and 
geometric corrections must be firstly performed. In addition, topographic relief exerts a 
great influence on identifying croplands and topographic correction must be also 
performed. The commercial ERDAS Imagine software was used to co-register and 
orthorectify the Landsat TM images. The orthocorrection model of Leica Photogrammetry 
Suite (LPS) was used by combining with ASTER 30 m resolution digital elevation model 
(DEM). As a result, the root mean squared errors (RMSE) for all images were less than 
0.5 pixels, and the nearest neighbor method was used for image resampling. 

3.2 Classification Method 

For indentifying cropland information, the machine learning Windows XP software 
package See5 was used to generate classification trees from the Landsat TM imagery, 
ancillary data sets, and field measurements [8]. The reason we chose this algorithm is 
that it is freely available for time limited testing. In addition, it is also an improved 
version of the most popular classification algorithm C4.5 and has a cross-validation 
function built-in. In order to complete the croplands identification, the National Land 
Cover Dataset (NLCD) Mapping Tool must be jointly utilized, which was designed 
by MDA Federal, Inc., for the United States Geological Survey. The tools developed 
for use within the ERDAS Imagine 8.7 software environment, and are for use with the 
Rulequest Research Cubist and See5 software packages above version 1.12 of cubist, 
and above version 1.18 of See5. 

Topographic features: 
DEM, Slope, Aspect, etc.

Vegetation indices: NDVI, 
RVI, SAVI,  etc.

Texture features: mean, 
covariance, entropy,  etc.

Spectral bands: NIR, Red, 
Green, etc.

NLCD Mapping Tools 

Boosting

GPS sample 
points

Raw Landsat TM images  

Data preprocessing: atmospheric 
correction, geometric correction, 

image enhancement, etc.

Independent variables

Dependent variable (.txt / .img) 

See5.0  decision tree softwareCross-validate

Classification rule sets

See5 classifier

Post classification processing

Accuracy assessment

Mapping cropland information

 Is modeling  
accuracy ok?

 

Fig. 2. Overall flow chart for identifying croplands integrating NLCD mapping tools and See5 
decision-tree software 
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Based on the original Landsat TM image and DEM data, a variety of independent 
variables were derived. When they were input into the NLCD tool, the dependent 
variables required by See5 software was obtained. In the hierarchical tree structure, 
each split in the tree results in two branches (Fig. 2). The algorithm searches for the 
dependent variable that, if used to split the population of pixels into two groups, 
explains the largest proportion of deviation of the independent variable. At each new 
split in the tree, the same exercise is conducted and the tree is grown until it reaches 
terminal nodes, or leaves, each leaf representing a unique set of pixels. Every leaf has 
a land cover class assignment. 

3.3   See5 Decision-Tree Software 

Data mining software of See 5 with boosting technique can build decision tree quickly 
and improve the precision of miscible classes. See5 (Windows 2000/Xp/Vista/7) is 
sophisticated data mining tools for discovering patterns that delineate categories, 
assembling them into classifiers, and using them to make predictions. See5 data 
mining software is based on the C5.0 algorithm. Fig. 3 is the user interface of See5 
and NLCD integrated in the ERDAS image processing environment. Independent 
variables including band ratios and texture were input See5 software. Then, it 
constructs a decision tree with the default values of all options. Classifiers constructed 
by See5 are evaluated on the training data from which they were generated. Finally, a 
decision tree is constructed and the accuracy is evaluated by cross-validation to select 
the available variables which have more contribution to classification. 

 

Fig. 3. The user interface of See5 and NLCD integrated into the ERDAS image processing 
environment 

3.4   Derivation of Independent Variables 

Compared with traditional supervision and unsupervised classification techniques, 
decision trees are strictly nonparametric and do not require assumptions regarding the 
statistical properties of the input data. They combine spectral tone, spatial texture, 
topographic data and line and sample location. In this study, four kinds of 
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Table 1. Derived independent variables for constructing decision tree rule sets 

Vegetation Indices/Band 
Ratios 

Equation [a] Reference 

Normalized Difference 
Vegetation Index (NDVI) 

NDVI=(RNIR-RRED)/(RNIR+RRED) [9] 

Ratio Normalized Difference 
Vegetation Index (RNDVI) 

RNDVI=(RNIR-
RRED)/(RNIR+RRED)*(RNIR/RRED) 

[10] 

Green normalized difference 
vegetation index (GNDVI) 

GNDVI= (RNIR-RGreen)/(RNIR+RGreen) [11] 

Transformed NDVI (TNDVI) TNDVI = [(NIR-R)/(NIR+R)+1]1/2 [12] 
Soil Adjusted Vegetation 
Index (SAVI) SAVI=[(1+L)×(RNIR-RRED)]/(RNIR+RRED+L)  [13] 

Difference Vegetation Index 
(DVI) 

DVI= RNIR-RRED [14] 

Ratio Vegetation Index (RVI) RVI= RNIR/RRED [15] 
Infrared percentage vegetation 
index (IPVI) 

IPVI= RNIR/( RNIR+RRED) [16] 

Transformed vegetation index 
(TVI) 

TVI=(NDVI+0.5)1/2 [12] 

Renormalized difference 
vegetation index (RDVI) 

RDVI= (NDVI×DVI) 1/2 [14] 

[a] where NIR denotes crop reflectance in the near infrared band (Landsat TM-Band4), RED 
denotes crop reflectance in the red band (Landsat TM-Band3), L = constant (taken as 0.5).  

Table 2. Derived texture variables of GLCM for generating decision tree rule sets 

GLCM 
variable  

Formulas[b] Description 

GLCM Mean Mean= ( )
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The Correlation texture measures 
the linear dependency of grey levels 
on those of neighbouring pixels. 

HOM 
(Homogeneity) 
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Homogeneity weights values by the 
inverse of the Contrast weight, with 
weights decreasing exponentially 
away from the diagonal. 

[b] where N is the number of levels specified under quantization, Pij value is the probability 
value from the GLCM. 
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independent variables were derived: topographic data, texture features, vegetation 
indices and raw spectral bands. In accordance with the available spectral bands, 
vegetation indices as well as topographic and texture independent variables were 
calculated as shown in Table 1 and Table 2. The Gray Level Co-occurrence Matrix 
(GLCM) and associated texture feature calculations are image analysis techniques. 
Given an image composed of pixels each with an intensity (a specific gray level), the 
GLCM is a tabulation of how often different combinations of gray levels co-occur in 
an image or image section. Texture feature calculations use the contents of the GLCM 
to give a measure of the variation in intensity (a.k.a. image texture) at the pixel of 
interest. Texture datasets are from grave-level co-occurrence matrix (GLCM): Mean, 
Entropy, Contrast, Correlation and Homogeneity. 

4   Results 

4.1   Identified Croplands 

In the study area, land under field crops, vegetables and flowers which account for 
most of the agricultural land were assigned to cropland, and all other land cover types 
were classified as non-cropland. It must be mentioned that perennial tree crops 
(including fruit trees) which present very little percentage of the agricultural land 
were classified into non-crop classes because they have similar spectral reflectance 
features with the forest. Therefore, it is very difficult to partition the tree crops from 
forest without the support of other ancillary data. 

An exclusion method was applied to the Landsat TM classification data to produce 
the crop/non-crop map. At the initial stage, non-vegetation area including water, 
construction land, and bare land was derived. Then, the forest map was produced. 
After extracting the forest and no-vegetation land, the rest land was treated as 
potential crop area. Fig. 4 shows the original Landsat TM image and cropland 
identification result. As shown in this figure, the cropland distributes almost 
everywhere in the study area besides the Southwestern part and Northeastern corner 
because of built-up areas and forest. 

 

Fig. 4. (a) is the original Landsat TM false color composite image by Band 1, Band 2 and 
Band3, and (b) is the identified croplands in Shunyi District 
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4.2   Accuracy Assessment 

The classification result based on remote-sensing images must be evaluated by other 
ancillary dataset such as field survey data and statistical data. Here, 495 sample points 
was used to validate the cropland classification result. The result shows that 454 
points are classified as cropland and the overall accuracy is 88.48% (438/495*100%). 
This means that the accuracy of cropland thematic map could satisfy the minimum 
identification requirements and are acceptable [17]. In addition, the total acreage of 
cropland was also used to evaluate the classification. The Landsat TM-based cropland 
acreage is 42,864.56 ha compared with 46,666.67 ha of the statistical data from 
Shunyi Branch of Beijing Municipal Bureau of State Land and Resources, and the 
overall accuracy is 91.85%. 

5   Conclusion 

Compared with traditional labor-intensive manner, remote sensing investigations can 
get accurate and real-time information especially in the large-scale regions. Even 
though the Landsat TM imagery cannot derive accurate cropland acreages because of 
its coarse spatial resolution, the spatial distribution trend of croplands is relatively 
useful to mater the cropland layout, cropping system and planting acreage, etc. for 
farmers and decision-makers. In addition, the accuracy can be improved with the help 
of advanced identification methods and various kinds of ancillary variables such as 
texture, color, DEM data. In the near future, with the launch of increasing sensors, the 
spatial, spectral and temporal resolution of remotely sensed images will be further 
improved and the cropland information can be accurately identified. 
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