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Abstract  

The objective of this study is to characterize and iden-

tify wheat leaves infected with powdery mildew using a 

domestic-made ground-based hyperspectral push-

broom imaging spectrometer (PIS) with a spectral 

resolution of 2 mm and a spatial resolution of 5-10 nm. 

After performing a data preprocessing including image 

mosaicing, reflectance conversion and spectral 

smoothing, the image and spectral characteristics were 

investigated based on the high spatial and spectral 

resolution hyperspectral data cube acquired by this 

system. To explore the image characteristics, occur-

rence-based texture filters were utilized and their 

combination of data range, mean, variance were 

proved to be effective in differentiating disease spots 

from normal leaves. On the basis of identifying cha-

racteristic bands (10 red bands (675.1-681.1 nm) and 

10 near-infrared bands (706.2-712.1 nm) were re-

spectively averaged) sensitive to this disease, an image 

feature space (X axis: red; Y axis: NIR) was built to 

identify disease spots by a linear regression model 

(y=3.48*x-7.57) which was constructed using a total of 

220 pixels from normal leaf and disease spot. To va-

lidate the identification accuracy of the model, 120 

pixels were used and the overall classification accu-

racy reached 92.5%. The misclassification was caused 

due to nonuniform lighting in the process of scanning. 

Final identification results indicated that correspond-

ing texture and spectral information were greatly en-

hanced due to the influence of pustular spots of pow-

dery mildew. The analysis results demonstrated that it 

was feasible to identify disease spots of powdery mil-

dew using the PIS. 

 
Keywords: Powdery Mildew, Leaf-Scale Wheat, Hyper-

spectral Imaging System, Texture Analysis. 

 

Introduction 
Powdery mildew (Blumeria graminis f. sp. tritici) is one of 

primary fungal diseases in common wheat (Triticum aesti-
vum L.) worldwide, which has caused significant yield and 

quality losses
1-3

. It is an importancnt biological disaster to 

hinder a sustabale develpment in precsion agriculture to a 

certain degree. Improving the ability of identifying diseases 

in an early infestation stage is crucial for farmers to aid in 

agricultural decision making
4-6

. Consequently, it is of sig-

nificant importance to understand the disease symptoms and 

quantify infestation severity. However, traditional methods 

of disease assessment rely heavily on on-farm investigations 

and unfortunately the observations from field surveys can 

only reflect the disease severity within a relatively small 

radius
7
.  

 

In recent years, the development of remote sensing has been 

identified as an effective tool to nondestructively monitor 

wheat diseases at a large spatial scale
8
. For example, Franke 

and Menz examined the potential of multi-spectral high 

resolution remote sensing for a multi-temporal analysis of 

wheat powdery mildew (Blumeria graminis) and leaf rust 

(Puccinia recondita) pathogens
9
. Chen et al. detected the 

severe infestation of the take-all disease in wheat using 

two-period Landsat Thematic Mapper (TM) imageries
10

. Li 

et al. used hyperspectral indices from an ASD (Analytical 

Spectral Devices) FieldSpec Pro FR™ spectrometer in the 

field to estimate foliar chlorophyll concentrations of winter 

wheat under yellow rust stress
11

. Mewes et al. investigated 

wheat stands infected with powdery mildew using a single 

airborne hyperspectral HyMap dataset
12

. To summarize the 

above studies, it can be found that three types of remotely 

sensed data have been extensively utilized from spaceborne, 

airborne and near-ground hyperspectral sensors. In com-

parison with multispectral images with wide wavebands, 

hyperspectral datasets with hundreds of narrow bands can 

prodive more detailed information on wheat diseaseas in 

specific visbile, near- and middle-infrared regions of elec-

tromagnetic spectrum
13

. Therefore, they have been utilized 

more extensively in identifying plant diseases and pests. 

 

It is rather remarkable that the wheat disease detection re-

sults from either spceborne or airborne remotely sensed 

images must be validated by groud truth data. In the past 

several years, non-imaging field hyperspectal spectroeters 

such as ASD's spectrometers have been proved effective and 

reliable to evaluate the identification of dieseas
14

. Never-

theless, they can only acquire mixed spectral information 

including stem, soil, shades, etc. for a disease-infected wheat 

canopy. It is therefore imperative that spectral purification 

techniques can emerge. Over the last several years, 

ground-based hyperspectral imaging spectrometers have 

been paid more attention to plant nutrient diagnosis and 

various crop stresses in precision agriculture
15-20

. However, 

few researches about wheat diseases were reported using the 
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ground-based hyperspectral imaging spectrometers. Cosi-

dering the above issues and the characterisitics of wheat 

leveas infected with powdery mildew symptoms, a domes-

tic-made ground-based hyperspectral imaging spectrometer 

was utilized. This study is to characterize and identify 

powdery mildew of individual wheat leaves using tech-

niques of spectral analysis in conjunction with image clas-

sification. 

 

Material and method 
Hyperspectral Imaging System: The hyperspectral imag-

ing system used in this study is a ground-based pushbroom 

imaging spectrometer (PIS), which acquires images by li-

near array pushbroom imaging. It was jointly developed by 

Beijing Research Center for Information Technology in 

Agriculture and University of Science and Technology of 

China. This system includes four primary parts: a hyper-

spectral imaging spectrometer, lifting and lowering slide 

track, computer and hand control machine (Fig. 1). In a 

single scanning process, it can collect hyperspectral image 

cube and pixel-by-pixel spectral information within the 

wavelength range of 400-1,000 nm. Table 1 lists the key 

specification parameters of this system. 

 

 
Fig. 1: Structural formation of the PIS and a demon-

stration of acquiring the spectra combing with image of 

wheat leaves infected with powdery mildew using the 

PIS. 
 

Table 1 

Key specification parameters of the PIS. 
Sensor 

parameters 

Parameter values 

Spectral range 400-1000 nm 

Spectral 

resolution 

2 nm 

Sampling interval 0.7 nm 

Field of View 

(FOV) 

16° 

Spatial resolution 5-10 mm 

Pixel dimension 7.4 μm×7.4 μm 

Image resolution 1400 (Spatial dimension) × 1024 

(Spectral dimension) 

Experimental design: At the grain-filling stage of wheat, 

which was a key yield-forming period, an experiment was 

conducted in the wheat farm of Beijing Academy of Agri-

culture and Forestry Sciences (39.93° N, 116.27° E) on 26 

May 2010. The tested winter wheat cultivar was Jing-

dong-12 under normal water and fertilizer-nitrogen man-

agement. In our experiment, seven groups of the top second 

wheat leaves with different severity levels were collected. 

To keep wheat leaves fresh, the PIS device was installed in a 

dark room near the experiment filed. After wheat leaves 

were picked, they were fixed using some thumb tacks on the 

sampling platform covered with a black cloth (Fig. 1). 

 

Disease severity assessment: Powdery mildew is characte-

rized by a powdery white to gray fungal growth on wheat 

leaves, which can be recognized as fluffy white mold growth 

on leaf surfaces. When powdery mildew-infected symptoms 

of wheat leaves were evaluated, relative disease damage 

levels were estimated in accordance with the pathological 

criteria for the diagnosis of wheat powdery mildew. Con-

sequently, according to the number and infestation area of 

disease spots for each leaf, four severity levels were classi-

fied: normal (there were not any disease spots), light (both 

the number and the area were small), moderate (the area was 

large but the number was small, or the area was small but the 

number was large) and serious (both the number and the area 

were large). Fig. 2 shows a visual comparison of different 

infestation levels at the leaf scale. 

 
Fig. 2: A visual comparison of different infestation levels 

at the leaf scale. 
 
Data acquisition and preprocessing: Before measuring 

wheat leaves, the height of lens of the PIS was fixed at 38 cm 

over the leaves according to the FOV of PIS. The machine 

moved at a speed of 24 mm/s considering the focal length 

and object distance and the halogen lamp irradiation was 

fixed at a 45° angle. Afterwards, each parameter set was 

performed in the control software and the lamp was opened. 

In accordance with corresponding setups, the hyperspectral 

image cubes were collected by the PIS (Fig. 1).  

 

After acquiring the original hyperspectral images, they must 

be further processed. There were three primary steps: (1) 

hundreds of BMP format pictures were mosaiced to form an 

entire BIL format image in the Matlab programming envi-

ronment; (2) reflectance conversion was carried out using an 

emperical linear method (eq. 1); (3) a moving-average 

smoothing algorithm was utilized to exclude abnormal val-

ues and smooth the spectral curves. The most important 
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aspect was that the little white reference panel must be used 

to optimize the instrument before and after collecting the 

spectra. To obtain the final spectral reflectance for each leaf, 

five region of interest (ROIs) were evenly selected to derive 

the mean spectrum from the tip to the bottom. 

 

*a DN b                                                                 (1) 

 

where  is the real reflectance, a and b are the coefficients, 

DN (Digital Number) is the pixel value from original image. 

When putting the measured spectral value and correspond-

ing DN into Eq. 1, a and b can be obtained by the 

least-square method (LSM) and then  can be correspon-

dingly obtained. 

 

Results 
Image characteristics of wheat powdery mildew: A group 

of wheat leaves with different infestation levels was ran-

domly selected to describe the image characteristics. To 

generate a near-natural appearing composite image, a band 

combination of 680 (red), 550 (green) and 460 nm (blue) was  

 

used. The acquired hyperspectral image showed a little dark, 

especially on the margin. The reason for this phenomenon 

was that non-uniform light irradiation was caused during the 

scanning process using single direction halogen lamps. To 

remove the influence of thumb tacks, a rectangle ROI was 

used to create a masked composite image (Fig. 3(a)). In 

order to analyze the differences of texture information be-

tween normal and powdery mildew-covered wheat leaves, 

occurrence-based filters were performed in the Environment 

for Visualizing Images (ENVI) image processing environ-

ment
21

. Consequently, five occurrence filters available of red 

band were obtained including data range, mean, variance, 

entropy and skewness (Fig. 3(b)). It could be found that the 

disease spots were obviously discernible in the images of 

mean, variance and data range, but conversely the available 

information was insufficient for the images of entropy and 

skewness. Therefore, a false composite image was formed 

using the images of mean, variance and data range (Fig. 3(c)). 

As shown in Fig. 3(c), there was obvious difference between 

normal leaf and disease spots. The disease spots of powdery 

mildew appeared in white color compared with green wheat 

leaves. 

 

 
Fig. 3: Texture analysis of the high spatial resolution PIS image. 

 

Based on every ten specified ROIs for normal and infected 

leaves (Fig. 3(a)), the corresponding statistical parameters of 

three texture filters were derived from the statistical func-

tions of ENVI (Table 2). It could be found that all the sta-

tistical parameters of infected leaves were greater than that 

of normal leaves. The phenomenon could be interpreted that 

the cover of powdery mildew increased the sense of con-

cavo-convex, so the texture information was richer than that 

of the relatively flat normal leaves. Considering the differ-

ences of three filters, the largest one was the maximum value 

of mean (23.300) and the smallest one was the minimum 

value of variance (0.006). 
 

Table 2 

 Statistical parameters of texture filters between normal and infected wheat leaves. 

 

 Data range Mean Variance 

Min Max Mean Stdev Min Max Mean Stdev Min Max Mean Stdev 

Normal leaves 0.174 1.130 0.584 0.164 2.664 4.807 3.864 0.397 0.004 0.124 0.035 0.018 

Infected leaves 0.349 8.254 2.956 1.661 7.065 28.107 14.654 3.993 0.010 8.106 1.210 1.333 

Difference* 0.175 7.124 2.372 1.497 4.401 23.300 10.790 3.596 0.006 7.982 1.175 1.315 

 
* shows that the values were derived from the subtraction of texture statistical parameters between normal and infected leaves. 
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Spectral responses of different powdery mildew-infected 

levels: To show the necessity of image smoothing, Fig. 4 

demonstrated the comparison of hyperspectral curves be-

tween pre- and post-smooth. It was obvious that the hyper-

spectral curve was greatly smoothed, especially at the wa-

velengths of 445-680 and 760-1000 nm. Before comparing 

the spectral curves of four severity levels, two pixels with 

normal leaf and disease spot (Fig. 4) were selected to dem-

onstrate their spectral differences (Fig. 5A). We could find 

that the reflectance of disease spot was greatly greater than 

that of normal leaf at the wavelength of 450-950 nm. The 

typical spectral characteristics (blue and red valleys, green 

peak) of leaf pixel covered with spot disease had lost in the 

visible spectrum. Therefore, a conclusion could be drawn 

that the reflectance of normal leaf was greatly enhanced due 

to the cover of powdery mildew spot disease. Furthermore, 

taking four leaves with normal, light, moderate and serious 

infestation levels for example, their spectral curves were 

comparatively analyzed. To clearly reflect the spectral cha-

racteristics for each level, their average reflectance values 

were obtained by averaging the ROIs along the entire leaf 

(Fig. 5B). It could be found that the reflectance increasingly 

increased with the increase of infestation severity. 

 
Fig. 4: A comparative of hyperspectral curves between 

before and after smoothing the hyperspectral image 

cube. 
 

 
Fig. 5: Hyperspectral curves derived from two pixels of normal leaf and spot disease (A) and four infestation levels (B). 

 

Identification of powdery mildew at leaf scale: In the 

high-resolution PIS image of wheat leaves, 110 pixels cov-

ered with powdery mildew and 110 pixels with normal leaf 

were selected at random. To find out the spectral characte-

ristic bands with the largest spectral difference, a difference 

operation was performed between normal and powdery 

mildew-infected pixels in the wavelength of 450-950 nm.  

 

According to the construction of normalized difference ve-

getation index (NDVI), red and near-infrared (NIR) spectral 

regions were considered as the two ranges sensitive to 

changes in the amount of green biomass and chlorophyll 

content
22

. In our study, two spectral sensitive bands were 

obtained by averaging the ten continuous bands with the 

largest spectral difference in the red and near-infrared wa-

velengths, respectively.  
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Fig. 6: Identified disease spots of powdery mildew from normal wheat leaves. 

 

Consequently, 10 Red bands (675.1-681.1 nm) and 10 NIR 

bands (706.2-712.1 nm) were averaged and two average 

bands were used to build an image feature space (X axis: red; 

Y axis: NIR). In our study, a total of 220 pixels were ave-

ragely selected to construct the identification linear regres-

sion model for normal leaf and disease spot (Fig. 6(a)). It 

was obvious that the distribution of points of disease spots 

was more discrete than that of normal leaf. To validate the 

accuracy of this model, 60 pixels were selected for each level. 

The identification result showed that 8 pixels were misclas-

sified as normal leaf and 1 pixel was misclassified as disease 

spot. Therefore, the overall classification accuracy reached 

92.5%. As seen in the identified image (Fig. 6), most of 

disease spots were identified, but some pixels were ob-

viously misclassified as disease spots from normal leaves 

because of the influence of non-uniform lighting. 

 

Conclusion and Discussion 
In this study, the image and spectral characteristics of wheat 

leaves infected with powdery mildew was fully analyzed 

using a near-ground hyperspectral imaging system. It has 

been proved that this system can be sufficiently used in 

identifying the wheat disease information. By building a 

linear regression model, disease spots were mostly identified. 

However, some misclassification was also caused due to 

non-uniform lighting in the process of scanning. In com-

parison with relatively flat leaves, pustular spots of powdery 

mildew increase the values in both texture and spectral in-

formation. Consequently, the abrupt changes lay a theoreti-

cal foundation for identifying disease using high spatial and 

spectral resolution hyperspectral data cubes acquired by the 

ground-based hyperspectral imaging spectrometer.  

 

Nevertheless, with the increase of spectral bands, their data 

volume also increases greatly and more effective band 

compression algorithms will be required. In our study, it is 

comparatively easy to identify leaf-scale wheat disease due 

to single background. To identify wheat diseases more cor-

rectly at the canopy scale, a combination of texture and 

spectral information must be jointly utilized due to the in-

fluence of complex background in a field survey. 
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