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Abstract Wheat aphid, Sitobion avenae F. is one of the most destructive insects infesting

winter wheat and appears almost annually in northwest China. Past studies have demon-

strated the potential of remote sensing for detecting crop diseases and insect damage. This

study aimed to investigate the spectroscopic estimation of leaf aphid density by applying

continuous wavelet analysis to the reflectance spectra (350–2 500 nm) of 60 winter wheat

leaf samples. Continuous wavelet transform (CWT) was performed on each of the

reflectance spectra to generate a wavelet power scalogram compiled as a function of

wavelength location and scale of decomposition. Linear regression between the wavelet

power and aphid density was to identify wavelet features (coefficients) that might be the

most sensitive to aphid density. The results identified five wavelet features between 350

and 2 500 nm that provided strong correlations with leaf aphid density. Spectral indices

commonly used to monitor crop stresses were also employed to estimate aphid density.

Multivariate linear regression models based on six sensitivity spectral indices or five

wavelet features were established to estimate aphid density. The results showed that the

model with five wavelet features (R2 = 0.72, RMSE = 16.87) performed better than the

model with six sensitivity spectral indices (R2 = 0.56, RMSE = 21.19), suggesting that

the spectral features extracted through CWT might potentially reflect aphid density. The

results also provided a new method for estimating aphid density using remote sensing.
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Introduction

Wheat aphid, Sitobion avenae (Fabricius), is one of the most destructive pests in agri-

cultural systems, especially in the regions of temperate climate in the northern and

southern hemispheres and occurs annually in the wheat planting area of China. Aphid feed

on wheat plants and injects saliva that contains plant toxins, which results in significant

yield loss (Rabbinge et al. 1981; Halbert et al. 1992). It is reported that the threshold of

wheat aphid infestation that indicates when management action should be triggered is

considered to be on average 5 per tiller. It has been reported that aphid density has a

positive correlation with leaf damage and yield (Luo et al. 2011). It has also been shown

that a density of 10 aphids per tiller results in a 7 % yield loss and 40 aphids per tiller leads

to an 11 % yield loss (Shaoyou et al. 1986; Larsson 2005).

Pesticide applications are effective in controlling aphid and minimizing the yield loss of

winter wheat (Fluckiger et al. 1992; Pike et al. 1993) but they are not always effective and

economical for long-term control (Lyda and Burnett 1970; Rush and Lyda 1982; Whitson

and Hine 1986). This is because the automatic spray systems tend to use excessive amounts

of pesticide due to lacking the irregular infestation patterns, which not only increases costs

of production but also impacts on the environment (Higley and Pedigo 1993; Pimentel

1995; Ahmed et al. 2001). Therefore, in practice, it is important to monitor aphid infes-

tation at critical junctures of crop growth and obtain spatial distribution information on

aphid infestation within a particular field for site-specific management and judicious

application of pesticides.

The common and conventional ways to obtain information of density infestation in the

field is by manual field scouting, which has been shown to be expensive, time-consuming,

and difficult for large farms (Zhang et al., 2003). However, hyperspectral remote sensing

technology may be a superior alternative for obtaining spatial distribution information on

aphid infestation density over a large area due to the relatively lower cost and the possi-

bility for it to be mounted on airborne and space-borne platforms.

There has been some progress made in detecting aphid infestation density using

hyperspectral remote sensing. Riedell and Blackmer (1999) reported that leaf reflectance in

the 625–635 and 680–695 nm ranges, as well as the normalised total pigment to chloro-

phyll ‘a’ ratio index (NPCI) were good indicators of chlorophyll loss and leaf senescence

caused by Russian wheat aphid (Diuraphis noxia Kurdjumov) and greenbug (Schizaphis
graminum Rondani) feeding on wheat. Yang et al. (2005) used a hand-held radiometer in

greenhouse experiments to characterise greenbug stress in wheat and found that the band

centered at 694 nm and the vegetation indices derived from bands centered at 800 and

694 nm were the most sensitive to greenbug-damaged wheat. Mirik et al. (2006a) studied

the relationship between spectral indices and greenbug abundance and found that damage

sensitive spectral index1(DSSI1), damage sensitive spectral index2 (DSSI2), simple ratio

(SR) and normalised difference vegetation index (NDVI) were related to damage by

greenbug. Mirik et al. (2006b) developed an aphid index (AI) and found that AI had the

strongest relationships with greenbug density. Mirik et al. (2007) found that remote sensing

data had the potential to distinguish damage by Russian wheat aphid and quantify

its abundance in wheat, but success for Russian wheat aphid density estimation depended

on the selection of the spectral vegetation indices. Yang et al. (2009) suggested that
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ratio-based vegetation indices (based on 800/450 and 950/450 nm) were useful in differenti-

ating the stress caused by Russian wheat aphid and greenbug in wheat. These findings suggest

that remote sensing using spectral reflectance and indices can be an effective technique for non-

destructively detecting plants stressed by Russian wheat aphid and greenbug. However,

practical applications of remote sensing methods using vegetation indices are limited because

they employ only a limited number of spectral or hyperspectral bands, from which it is difficult

to detect the subtle signals and spectral changes caused by aphid infestation.

Various physiological and biochemical factors, such as pigments, nutrient content and

leaf water content, which can influence the tissue optical properties, change with wheat

aphid infestation and thus affect the spectral response (Broge and Mortensen 2002; Sims

and Gamon 2002; Ayala-Silva and Beyl 2005). Continuous wavelet analysis (CWA) has

been reported as an emerging and potential tool for deriving biochemical constituent

concentrations from leaf reflectance spectra (Blackburn 2007; Blackburn and Ferwerda

2008; Cheng et al. 2010). The continuous wavelet transform decomposes leaf reflectance

spectra into a number of scale components so that each component is directly comparable

with the reflectance spectra. Continuous wavelet analysis is used in this study as a spectral

feature analysis tool to extract wavelet features (coefficients) that are sensitive to wheat

aphid density. This study sought to answer two questions: (1) Is CWT more effective than

the commonly used spectral indices for detecting aphid damage and estimating aphid

density? (2) What are the most informative wavelet features for estimating aphid density?

Materials and methods

Leaf sample collection

Many wheat plants were collected at the grain filling stage, based on different aphid

densities on the second leaves in an experimental field in Beijing Academy of Agriculture

and Forestry Sciences, China (39�560 N, 116�160 E) on May 26, 2010. The plants were

transported to the laboratory, and a total of 60 second leaves infested by wheat aphid were

removed with scissors. They represented different aphid densities, ranging from 0 to 120

per leaf. Aphid numbers were counted and then they were removed before performing the

spectral measurement.

Leaf spectral measurement

Leaf spectra were measured immediately after the aphid removal. Reflectance measure-

ments of these sample leaves were recorded between 350 and 2 500 nm using a Fieldspec

FR spectroradiometer (ASD Inc., Boulder, CO, USA) together with a leaf clip. This

instrument sampled every 3 nm between 350 and 1 050 nm, and every 10 nm between

1 050 and 2 500 nm. Five reflectance spectra were taken per leaf using an ASD leaf clip

covering a halogen bulb-illuminated area with a radius totaling 10 mm. A mean reflectance

spectrum was calculated for each leaf.

Spectral indices

Table 1 represents 14 vegetation indices tested in this study for their sensitivity to aphid

damage.
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Continuous wavelet transformation (CWT)

Wavelet transform uses a mother wavelet basis function to convert the original reflectance

spectrum into a set of coefficients. The main equation of wavelet transformation can be as

follows:

wa;b kð Þ ¼ 1
ffiffiffi

a
p w

k� b

a

� �

ð1Þ

where a is the scaling factor determining the width of the wavelet, b is the shifting factor

indicating the position, wa,b(k) represents the wavelets that are transformed by scaling and

shifting the mother wavelet w(k).

In the transformation process, the output of CWT is given by Mallat (1991):

Wf a; bð Þ ¼ f ;wa;b

� �

¼
Z �1

þ1
f ðkÞwa;b kð Þdk ð2Þ

where f(k) (k = 1, 2,…,n, n is the number of wavebands and herein n = 2151) is the

reflectance spectrum and the coefficients (Wf (ai, bj), i = 1, 2,…, m, j = 1, 2,…, n) are able

to constitute a 2-dimensional scalogram (i.e., an m 9 n matrix), in which one dimension is

scale and the other is wavelength. The value of each element of the scalogram represents

the wavelet power that indicates the correlation between the scaled and shifted mother

Table 1 Various vegetation indices compiled from literature

Spectral Index Formula References

Photochemical Reflectance Index
(PRI)

(R531 - R570)/(R531 ? R570) Gamon et al. (1997)

Modified Chlorophyll Absorption
Reflectance Index (MCARI)

[(R700 - R670) - 0.2(R700 -
R550)] * (R700/R670)

Daughtry et al. (2000)

Aphid Index(AI) (R740 - R887)/(R691 - R698) Mirik et al. (2006a)

Triangular Vegetation Index (TVI) 0.5[120(R750 - R550) -
200(R670 - R550)]

Broge and Leblanc (2001)

Damage Sensitive Spectral Index1
(DSSI1)

(R719 - R873 - R509 - R537)/
(R719 - R873 ? R509 - R537)

Mirik et al. (2006b)

Anthocuanin Reflectance Index (ARI) (R550)-1 - (R700)-1 Gitelson et al. (2001)

Narrow-band Normalised Difference
Vegetation Index (NBNDVI)

(R850 - R680)/(R850 ? R680) Thenkabail et al. (2000)

Nitrogen Reflectance Index (NRI) (R570 - R670)/(R570 ? R670) Filella et al. (1995)

Damage Sensitive Spectral Index2
(DSSI2)

(R747 - R901 - R537 - R572)/
(R747 - R901 ? R537 - R572)

Mirik et al. (2006a)

Plant Senescence Reflectance Index
(PSRI)

(R680 - R500)/R750 Merzlyak et al. (1999)

Structure Insensitive Pigment Index
(SIPI)

(R800 - R450)/(R800 - R680) Peñuelas and Inoue (1999)

Normalized Total Pigment to
Chlorophyll a Ratio Index (NPCI)

(R680 - R430)/(R680 - R430) Riedell and Blackmer (1999)

Plants
Senescence Reflectance Index (PSRI)

(R680 - R500)/R750 Merzlyak et al. (1999)

Normalized Difference Water Index
(NDWI)

(R860 - R1240)/(R860 ? R1240) Gao (1996)

Precision Agric

123



wavelet and a segment of the reflectance spectrum. Spectral signals can vary in both

amplitude (e.g. feature depth) and scale (e.g., feature width). Each capturing spectral

features of different widths by CWT were as scales. Narrow absorption features in the

original spectrum will be captured by wavelets at a low scale (narrow width), whilst the

shape of the continuum will be captured by wavelets at a higher scale (Blackburn and

Ferwerda 2008; Rivard et al. 2008).

It has been reported that the shape of the absorption features of vegetation was similar to

a Gaussian or quasi-Gaussian function (Torrence and Compo 1998). Therefore, the second

derivative of Gaussian (DOG) also known as the Mexican Hat was used as the mother

wavelet basis (Muraki 1995; Torrence and Compo 1998; Cheng et al. 2011). In this study,

the leaf reflectance spectra ranged from 350 to 2 500 nm and there were 2 151 bands

available (350–2 500 nm). Any scale greater than 210 = 1024 was discarded because the

decomposed components at high scales did not carry meaningful spectral information. All

CWT operations were carried out by Matlab 7.1 (Natick, MA, USA).

Calibration and validation of regression models

The entire dataset of 60 leaf samples, consisting of reflectance spectra and leaf aphid

density, was divided into two groups. Thirty-six leaf samples were selected randomly and

used to calibrate the regression models, whilst the other twenty-four were used for vali-

dating the model. Correlation analysis was carried out to examine the sensitivity of each

feature variable including spectral index and wavelet feature to aphid density. The sen-

sitivity was described by the absolute coefficient of correlation (R2) between the feature

variables and aphid density. Higher absolute values of R indicate greater sensitivity of the

feature. Coefficients of determination (R2) and p value were derived from data analyses to

evaluate models that corresponded to the calibration set. Based on the sensitivity analysis

of the feature variables, a multivariate linear regression (MLR) analysis was applied for

developing multivariate models for estimating aphid density. Two MLR models were

established based on sensitive spectral indices and sensitive wavelet features, respectively.

The predictive capabilities of the two MLR models were assessed based on the predictive

R2 value and the root mean square error (RMSE) between the measured and predicted

aphid density. The formula of RMSE is:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ei � oið Þ2

n

v

u

u

u

t

ð3Þ

where n is the sample number, and ei and oi are the predicted and measured values of the

model, respectively.

Results and discussion

Response of leaf reflectance to aphid density

Figure 1 shows the aphid-infested leaf spectrum (average spectrum of sample leaves with

aphid density [80) and non-infested leaf spectrum (average spectrum of sample leaves

with aphid density\5). It was easy to see that the reflectance of the leaf infested by aphid

was higher in the visible (VIS) region and short-wave infrared (SWIR) region, but lower in
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the near-infrared (NIR) region than the reflectance of the non-infested leaf. It has been

reported that leaf optical properties are a function of the plant internal and external

structure, water content and biochemical concentration (Jacquemoud et al. 1996; Gitelson

et al. 2002; Sims and Gamon 2002). The leaf spectra were mainly influenced by pigment

concentrations in the VIS region and the leaf internal structure in the SWIR region. In the

SWIR region, the spectra were dominated by leaf water absorption and had the greatest

sensitivity to water content (Carter 1991; Riedell and Blackmer 1999). Aphid feeding by

piercing the leaf and sucking out leaf juice caused a reduction in pigment concentrations

especially chlorophylls and leaf water content in the infested leaf and therefore it exhibited

a higher reflectance in the VIS and SWIR regions than the non-infested leaf. Also, infested

leaf tissue was destroyed and multiple scattering became weaker (Riedell and Blackmer

1999; Graeff and Claupein 2007), leading to a lower reflectance than for the non-infested

leaf in the NIR region.

It should be noted that the spectrometric measurements have been done only after

aphids were removed from the sample leaves because aphid populations are highly mobile

and tend to travel (e.g. from leaf to leaf, plant to plant) after an infestation or when the

surrounding environment is no longer suitable for their survival. Therefore, it is obvious

that for cropping fields under aphid attack, most leaves would appear to be in the ‘‘post-

attack’’ status (i.e. no aphids on most leaves). For remote sensing observations at canopy

level or at a larger scale, the spectral contribution from infested plants or leaves is dom-

inant, compared with the signal from aphids themselves which have little effect on spectral

characteristics. It may be concluded that the spectral analysis of the post-attacked leaves, as

conducted in the present study, is meaningful for monitoring aphid attacks over large areas.

Correlation of spectral indices with leaf aphid density

A correlation analysis was carried out between the 14 spectral indices from Table 1 and

aphid density, respectively. Table 2 summarises the results of the correlation analyses. The

spectral indices that had a significant relationship with leaf aphid density (p value\0.0001)

were DSSI1, PRI, AI, NBNDVI, SIPI and MCARI, whilst NDWI and NPCI were also

correlated to leaf aphid density (p value\0.001). The other spectral indexes showed low or

no correlation with aphid density.

Correlation scalogram for aphid density

Figure 2 shows a correlation scalogram for aphid density and spectral reflectance of leaf by

continuous wavelet analysis. A squared correlation coefficient (R2) was reported for each

Fig. 1 Representative spectra of
leaves non-infested and infested
by aphid. (The average spectrum
of sample leaves with aphid
density more than 80 represents
infested leaf spectrum, and the
average spectrum of sample
leaves with aphid density less
than 5 represents non-infested
leaf spectrum)
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correlation scalogram at each wavelength and scale. The R2 values were obtained for the

linear correlation established between wavelet power and aphid density. Therefore, each

element of the correlation scalogram represented a feature characterized by the R2 value,

wavelength and scale. The R2 values ranged from 0 to 0.65.

Most informative wavelet features for estimating leaf aphid density

The most informative features for an independent variable were (1) retaining features

where the correlations were statistically significant (p \ 0.0001) and (2) to rank these

features in descending order based on the R2 values and to retain those encompassing the

top 5 % (Fig. 3). Therefore, the cut-off R2 value was determined as 0.48; when R2 was

more than 0.48 (p \ 0.0001), we considered the wavelet feature ranges were sensitive to

aphid density. The informative wavelet features were in the ranges of 484–552, 609–619,

637–651 718–770 and 1 673–1 713 nm in every scale (Fig. 2).

The maximum R2 value in each wavelet feature range was selected, and the wavelength

and scale of the five distinct wavelet features most strongly correlated with aphid density

are shown Table 3. The low scale features (491 nm, scale 3), (617 nm, scale 3), (639 nm,

scale 3), and (750 nm, scale 2) captured narrow absorption features that were primarily

influenced by pigment concentration. High-scale (ranging from 6 to 10) features (1690 nm,

scale 6) captured broad changes in strong water absorption. The R2 value and p value

showed that the most informative wavelet features performed better than spectral indices in

estimating the leaf aphid density. The strongest relationship between leaf aphid density and

wavelet power for an individual feature was located in scale 2 and at 750 nm. Because it

was located in the red-edge range, it was concluded that the red edge might be the most

sensitive to aphid density.

Table 2 Coefficient of determination between Spectral Index and aphid density (N = 36)

Spectral Index R R2 p Value Spectral Index R R2 p Value

AI -0.75 0.56 0.000 NBNDVI -0.55 0.31 0.000

ARI 0.13 0.02 0.443 PSRI 0.32 0.10 0.054

DSSI1 0.61 0.37 0.000 SIPI 0.59 0.35 0.000

DSSI2 -0.23 0.05 0.179 MCARI 0.64 0.41 0.000

PRI -0.57 0.33 0.000 PhRI 0.14 0.02 0.425

TVI 0.41 0.17 0.001 NPCI 0.42 0.18 0.001

NDWI -0.53 0.28 0.001 NRI 0.35 0.12 0.036

Fig. 2 Correlation scalogram relating wavelet power with aphid density in the calibration dataset (N = 36)
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Regression model for aphid density and validation

The MLR model 1 was constructed with the best six spectral indices including DSSI1, PRI,

AI, NBNDVI, SIPI and MCARI, which were significantly correlated with aphid density

(p value\0.0001), whilst the MLR model 2 was established with the most informative five

wavelet features. The two MLR models were validated using the validation dataset, and the

potential predictability of these models in estimating aphid density was assessed using

the R2 and RMSE values of the predicted and measured values. The results showed that the

MLR model 2 (R2 = 0.72, RMSE = 16.87) was better than the MLR model 1 (R2 = 0.56,

RMSE = 21.19) in estimating aphid density (Fig. 4). This result suggested that the

spectral features extracted through CWT could approximately reflect aphid density.

Implications of wavelet features under field conditions

The results show that CWT as a spectral feature analysis tool has great potential for

estimating aphid infestation density at leaf level in the laboratory. Laboratory analysis at

the leaf level is the first step toward the goal of using remote sensing technology to detect

aphid density in a wheat field. Based on this result, wavelet features and CWT could be

used as a basis to further explore suitable spectral features for estimating aphid infestation

density using hyperspectral data in the field, and specific sensors based on these efficient

bands or spectral features for practical use may be developed in future. This capability

would enable more precise targeting of pesticides on those places in the field where they

are needed.

Fig. 3 Example of the frequency distribution of R2 values observed for the scalogram in Fig. 2. The cut-off
R2 value used to delineate features correlated to aphid density

Table 3 Correlations between
aphid density and most informa-
tive wavelet features derived
from the calibration set

Feature code Feature location R R2 p Value

Wavelength (nm) Scale

A 491 3 -0.76 0.58 0.000

B 617 3 0.73 0.53 0.000

C 639 3 0.70 0.49 0.000

D 750 2 0.81 0.66 0.000

F 1690 6 -0.76 0.58 0.000

Precision Agric

123



Conclusion

This work has tried to detect aphid infestation density using spectral response features of

damaged leaves by aphid. The study has demonstrated the feasibility of applying CWT to

leaf reflectance spectra in estimating aphid density. By decomposing the reflectance spectra

into various scales, CWT can effectively identify meaningful spectral information relevant

to aphid density. Five wavelet feature regions for aphid density were identified based on a

threshold R2 value (R2 = 0.48). Study results showed that the five most informative

wavelet features (one per feature region) extracted from the correlation scalogram were

related to chlorophyll concentration, chlorophyll absorption, cellular structure, water

content and dry matter. Among them, the wavelet feature (750 nm, scale 2) had the best

correlation with aphid density (R2 = 0.66). The correlation between spectral indices and

aphid density showed a high correlation for DSSI1, PRI, AI, NBNDVI, SIPI and MCARI

(p value\0.0001).Two MLR models had been established based on the six spectral indices

and the five most informative wavelet features, respectively. The validation result con-

firmed that the MLR model using wavelet features was better in estimating aphid density

than the MLR model based on spectral indices.

The study demonstrated that CWT was an effective method to extract the sensitive

wavelet features from hyperspectral data to aphid density and to estimate aphid density at

leaf level. In future, it will be necessary to test the capability of CWT to estimate aphid

damage and aphid density at canopy/field level with onboard hyperspectral images.
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