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a b s t r a c t

Powdery mildew (Blumeria graminis) is one of the most destructive diseases, which has a significant
impact on the production of winter wheat. Detecting powdery mildew via spectral measurement and
analysis is a possible alternative to traditional methods in obtaining the spatial distribution information
of the disease. In this study, hyperspectral reflectances of normal and powdery mildew infected leaves
were measured with a spectroradiometer in a laboratory. A total of 32 spectral features (SFs) were
extracted from the lab spectra and examined through a correlation analysis and an independent t-test
associated with the disease severity. Two regression models: multivariate linear regression (MLR) and
partial least square regression (PLSR) were developed for estimating the disease severity of powdery mil-
dew. In addition, the fisher linear discriminant analysis (FLDA) was also adopted for discriminating the
three healthy levels (normal, slightly-damaged and heavily-damaged) of powdery mildew with the
extracted SFs. The experimental results indicated that (1) most SFs showed a clear response to powdery
mildew; (2) for estimating the disease severity with SFs, the PLSR model outperformed the MLR model,
with a relative root mean square error (RMSE) of 0.23 and a coefficient of determination (R2) of 0.80 when
using seven components; (3) for discrimination analysis, a higher accuracy was produced for the heavily-
damaged leaves by FLDA with both producer’s and user’s accuracies over 90%; (4) the selected broad-
band SFs revealed a great potential in estimating the disease severity and discriminating severity levels.
The results imply that multispectral remote sensing is a cost effective method in the detection and map-
ping of powdery mildew.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

At least 10% of global food production is lost due to plant dis-
ease (Christou and Twyman, 2004; Strange and Scott, 2005). Pow-
dery mildew, caused by Blumeria graminis, is one of the most
widely destructive plant diseases in the world (Reuveni and Reu-
veni, 1998; Olsen et al., 2003; Nofal and Haggag, 2006). The disease
affects a wide range of commercial crops, and can result in a signif-
icant yield loss (Sharma et al., 2004; Strange and Scott, 2005).
Therefore people have paid a great attention to the impact of pow-
dery mildew on food security (Hardwick et al., 1994). Several stud-
ies have addressed the influencing mechanism of powdery mildew
from physiological or genetic perspectives, attempting to breed
varieties with strong resistance to powdery mildew or to develop
effective fungicides (Gooding et al., 1994; Wright et al., 1995; Hu
et al., 2008). Meanwhile, great progresses were achieved in pre-

venting and controlling powdery mildew in wheat planted areas.
For example, Hardwick et al. (1994) found that a fungicide with
fenpropidin and fenpropimorph appeared to be effective in con-
trolling the powdery mildew. Jørgensen and Olesenb (2002) dis-
covered that the infection of powdery mildew can be successfully
prevented with fungicides containing ergosterol biosynthesis
inhibitors. However, although the application of fungicides is effec-
tive in controlling the powdery mildew, it is impossible to eradi-
cate the disease at a regional scale since many species of plants
can host this pathogen (Eichmann and Hückelhoven, 2008). There-
fore, it is important in practice for crop managers to obtain infor-
mation about the spatial distribution of powdery mildew in time
to guide the spray of fungicide. In addition, an inaccurate applica-
tion of fungicide can lead to missing infected areas or overuse,
especially when using automatic spray systems such as tractors
or aircraft.

To obtain the information of disease infected boundaries in the
field, the most common and conventional way is conducting a field
survey. The traditionally ground-based survey method is very
expensive and inefficient and, therefore, is problematic over large
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areas. However, remote sensing technology may be a possible
alternative for obtaining the spatial distribution information of
powdery mildew over a large area with a relatively low cost.

During the last two decades, several studies were successfully
conducted to detect crop diseases by means of remote sensing
techniques (e.g. West et al., 2003; Sankaran et al., 2010). As stated
by Sankaran et al. (2010), optical remote sensing, particularly using
spectral features (SFs) extracted from visible and near-infrared
(NIR) regions, has great potential in plant disease diagnosis and
detection. For example, by using multispectral data, Franke and
Menz (2007) successfully detected powdery mildew and leaf rust
in a winter wheat field by using normalized difference vegetation
index (NDVI). Qin and Zhang (2005) obtained the infected area
information of rice sheath blight with broadband high spatial-res-
olution data. In addition, some researchers have applied hyper-
spectral remote sensing technique to detection and mapping crop
disease. Bravo et al. (2003) and Moshou et al. (2004) developed a
ground-based real-time remote sensing system for disease detec-
tion in winter wheat field, which achieved a classification accuracy
of over 90%. Huang et al. (2007) found that the Photochemical
Reflectance Index (PRI) had a strong estimating power for yellow
rust disease in winter wheat at canopy level. In their study, a rela-
tionship between PRI and disease severity of yellow rust in winter
wheat was further confirmed with airborne hyperspectral data. Liu
et al. (2010) also used hyperspectral reflectance measurements to
make an accurate discrimination of rice fungal diseases at different
severity levels. Based on the literature review, it is apparent that
the hyperspectral remote sensing has shown an even greater
potential in identifying and detecting crop diseases. Hyperspectral
remote sensing refers to a special type of imaging technology that
collects image data in many narrow contiguous spectral bands
(<10 nm band width) throughout the visible and solar-reflected
infrared portions of the spectrum (Goetz et al., 1985). Given the
fact that various symptoms and the corresponding spectral re-
sponses may vary with the diseases, it is thereby necessary to con-
duct an independent examination on the performance of several
commonly used SFs in detecting powdery mildew.

The infection caused by powdery mildew usually leads to a con-
tiguous stretched distribution pattern in the field, which thus pro-
vides a good chance for remote sensing applications (Lorenzen and
Jensen, 1989). Moreover, the most distinct symptom of powdery
mildew of winter wheat is that pustules in light white (sometimes
light yellow) color appear on leaves (Rémus-Borel et al., 2005). The
portion of pustules on leaves will increase with the severity level,
which leads to a significant spectral difference between normal
leaves and infected ones, allowing the disease to be detected based
on spectral signatures (Jones et al., 2010).

To date, there are a few studies addressing powdery mildew
detection using spectral discrimination. The knowledge about the
spectral responses to powdery mildew in winter wheat is still lack-
ing. Lorenzen and Jensen (1989) reported the spectral characteris-
tics of powdery mildew in barley. Rumpf et al. (2010)
differentiated between diseases Cercospora leaf spot, leaf rust
and powdery mildew for sugar beet at leaf level by using hyper-
spectral data. However, none of them has systematically explored
the spectral responses that are induced by powdery mildew. In
their studies, instead of using extracted SFs, the entire reflectance
spectral bands were utilized with some statistical analysis meth-
ods to improve estimated accuracy, which would inevitably in-
crease the computational load. The pivotal question, at what
severity level can powdery mildew be detected, has not been an-
swered yet. Therefore, the objectives of this study are: (1) To exam-
ine responses of a set of possible SFs to powdery mildew in winter
wheat at a leaf level, and identify the most suitable SFs for disease
detection; (2) to develop multivariate models in estimating the
disease severity at a leaf level; and (3) to determine the severity

level of powdery mildew that could be identified with an accept-
able accuracy by means of a spectral discrimination analysis.

2. Materials and methods

2.1. Study site and materials

The winter wheat (Triticum aestivum L.) plants were grown in an
experimental field in Beijing Academy of Agriculture and Forestry
Sciences, China, which was located at 39�560N, 116�160E at an alti-
tude of 56 m (Fig. 1). Cultivar ‘Jingdong 8’ was chosen, as it was
widely grown in Beijing and Hebei province and is moderately sus-
ceptible to powdery mildew. During the months of May and June,
2010, the powdery mildew ( B. graminis) occurred naturally in
approximately a half of the experimental field. The symptoms of
powdery mildew were unobvious at early growing stages, how-
ever, after the booting stage symptoms developed rapidly, and
were visible by the filling stage. Based on the work of Cao et al.
(2009), the early period of filling stage is an important time point
for conducting preventive procedures such as fungicide spray.
Therefore, we conducted the experiment on May 23, 2010 when
the filling stage began.

2.2. Data acquisition

2.2.1. Leaf sampling
Leaves were cut from the winter wheat plants in the field with

scissors, and samples were packed with ice bags and transported to
a nearby indoor laboratory for spectral measurements. Each leaf
sample was placed in individual small plastic bags in order to pre-
vent a water loss and cross contamination. There were a total of
114 leaf samples collected for measurement, including 34 normal
leaves and 80 diseased leaves with varied severity. Each leaf was
wrapped in moistened paper towels right after the spectral mea-
surement, so as to conduct subsequent leaf biochemical analysis.

2.2.2. Leaf spectra and pigment measurement
Leaf reflectance spectra were measured by using a FieldSpec�

UV/VNIR spectroradiometer (ASD Inc., Boulder, Colorado, USA)
over the 350–1050 nm wavelength range at 3 nm intervals, cou-
pled with a Li-1800 integrating sphere (Li-Cor Inc., Lincoln, Nebras-
ka, USA) as an illumination source. In order to avoid bands with
low signal-to-noise ratio at both ends, only the spectra ranging
from 450 to 950 nm were retained and applied for subsequent
analysis. The spectrum of a white Spectralon reference panel
(99% reflectance) was recorded once for every 10 measurements.
Leaf reflectance was determined by calculating a ratio of the sam-
ple radiance to that of the white Spectralon reference panel.
Depending on the heterogeneity of the pustule distributed pattern
on the leaf, 10–15 readings were recorded for each leaf, which
were then averaged to obtain a spectral measurement for the leaf
(sample). Right after spectral measurements, the leaves were cut
into pieces and placed in a tube with 10 ml acetone (80%). The pig-
ments were extracted by placing the tube in a 65 �C water tub in a
dark room for more than 5 h. Then, concentrations of chlorophyll-a
(Chla), chlorophyll-b (Chlb) and carotenoids (Car) were extracted
and computed using the equations of Lichtenthaler (1987) as
follows:

CA ¼ 12:25OD663 � 2:79OD647 ð1Þ
CB ¼ 21:50OD647 � 5:10OD663 ð2Þ
Cc ðmg=LÞ ¼ ð1000OD470 � 1:82CA � 85:02CBÞ=198 ð3Þ

where CA, CB, and CC are concentrations of Chla, Chlb and Car in
mgL�1, respectively. OD447, OD670, and OD663 are absorbency at
specific wavelengths.
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2.2.3. Determination of disease severity
The disease severity of each sample was determined by visual

estimation of a percentage of an infected leaf surface area based
on a color photo, which was taken right after the spectral measure-
ment for each diseased leaf with a background of a white paper fol-
lowing the methods of Graeff et al. (2006) and Luedeling et al.
(2009). To further minimize possible error sources that might be
incurred by an investigator, the estimated damage percentage
was classified into nine classes: 0–3% (no disease), 3–10% (disease
index, DI = 1), 11–20% (DI = 2), 21–30% (DI = 3), 31–40% (DI = 4),
41–50% (DI = 5), 51–60% (DI = 6), 61–70% (DI = 7), >70% (DI = 8).
In fact, there were no leaves/samples in this experiment with an
infected cover percentage higher than 80%, whereas those leaves
with a pustule portion less than 3% were actually difficult to visu-
ally separate from normal leaves. It should be noted that with this
criterion, DI was used as a continuous variable in subsequent
regression analysis. Apart from using DI, the disease severity of
leaves was also qualitatively categorized by two discrete levels:
Slightly-damaged leaves (those leaves with a portion of pustule
ranging from 3% to 30%) and heavily-damaged leaves (those leaves
with a portion over 30%). The definition of the severity levels of
infection referred to the criterion used by the plant protection
department (Chinese Standard: NY/T 613-2002). Using these cate-
gories, the entire dataset could be reorganized into 3 discrete levels
so that a subsequent discrimination analysis could be conducted.

2.3. Selection of SFs

From a physiological perspective, changes of pigment content,
cellular structure and appearance of mildew on leaf surface in-
duced by powdery mildew are responsible for the corresponding
spectral changes. To utilize those important spectral features
potentially sensitive to the changes, a total of 32 spectral features
(SFs) were adopted, including nine derivative spectra, three contin-
uous removal transformed parameters, nine broad-band SFs and
11 hyperspectral vegetation indices (VIs, Table 1). Derivative

spectra and continuous removal transformed SFs were used for
extracting the spectral characteristics around blue edge, yellow
edge, and red edge, which are closely related to the physiological
status of plants (Gong et al., 2002; Pu et al., 2003, 2004). Eleven
hyperspectral VIs were selected because they either have been
used for disease detection, such as Nitrogen Reflectance Index
(NRI), Photochemical Reflectance Index (PRI) and Transformed
Chlorophyll Absorption and Reflectance Index (TCARI) (Gamon
et al., 1992; Filella et al., 1995; Haboudane et al., 2004) or have a
potential in detecting stress, such as Red-edge Vegetation Stress
Index (RVSI) and Plant Senescence Reflectance Index (PSRI) (Mer-
ton and Huntington, 1999; Merzlyak et al., 1999). In addition, the
nine broad-band SFs were selected for examining their potential
in detecting powdery mildew because they are frequently used
for mapping or retrieving vegetation status. Of those, the original
band reflectances of green and red bands (based on the wavelength
range of Landsat-5 TM) were included for reflecting the color
change induced by the lesions caused by powdery mildew. Several
other broad-band VIs, such as Simple Ratio (SR), NDVI and Green
Normalized Difference Vegetation Index (GNDVI) were also in-
cluded as they were already used for detecting plant diseases (Zhao
et al., 2004; Yang et al., 2007). The band setting of the most com-
mon multispectral satellite data – Landsat-5 TM was used for gen-
erating the broad-band reflectance. The reflectances of Landsat-5
TM bands were obtained by integrating original hyperspectral
reflectances within individual TM band wavelengths with their
corresponding relative spectral response (RSR) functions. The inte-
gration was done by:

Rbroad ¼
Z blow

bhigh

f ðxÞdx ð4Þ

where Rbroad is the simulated reflectance for a broad-band; blow and
bhigh indicate the low and high limits of the broad-band wavelength.
The definitions, descriptions or formulas, and reference sources for
all 32 SFs were summarized in Table 1.

Fig. 1. Location of the experimental field.
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2.4. Regression analysis of SFs with disease severity

Correlation analysis was carried out to examine the sensitivity
of each SF to disease severity of powdery mildew. The sensitivity
of SFs could be described by the absolute coefficient of correlation
(R) between SFs and DI. The higher the absolute R, the stronger the
sensitivity of the SF. Based on the sensitivity analysis of SFs, mul-
tivariate linear regression (MLR) analysis and partial least square
regression (PLSR) analysis were applied and compared for develop-
ing multivariate models in estimating DI of powdery mildew. Two
measures, the coefficient of determination (R2) and the relative

root mean square error (RMSE), were used to evaluate the perfor-
mance of MLR and PLSR models. The relative RMSE is the RMSE di-
vided by the mean of observations. The formula of RMSE is:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyest;i � yobs;iÞ

2

n

s
ð5Þ

where n is the sample size (in this study, n = 114); yest is the esti-
mate of DI; yobs is the DI observation. To avoid a phenomenon of
over-fitting in simulating the two regression models, a leave-one-
out cross validation approach, called ‘‘cross validation approach’’,

Table 1
A summary of a set of SFs used in this study.

Category Title Definition Description or formula Literatures

Derivative spectral
features

Db Maximum value of 1st derivative
within blue edge

Blue edge covers 490–530 nm. Db is a maximum value of 1st
order derivatives within the blue edge of 35 bands

Gong et al. (2002)

kb Wavelength at Db kb is wavelength position at Db Gong et al. (2002)
SDb Sum of 1st derivative values within

blue edge
Defined by sum of 1st order derivative values of 35 bands
within the blue edge

Gong et al. (2002)

Dy Maximum value of 1st derivative
within yellow edge

Yellow edge covers 550–582 nm. Dy is a maximum value of 1st
order derivatives within the yellow edge of 28 bands

Gong et al. (2002)

ky Wavelength at Dy ky is wavelength position at Dy Gong et al. (2002)
SDy Sum of 1st derivative values within

yellow edge
Defined by sum of 1st order derivative values of 28 bands
within the yellow edge

Gong et al., (2002)

Dr Maximum value of 1st derivative
within red edge

Red edge covers 670–737 nm. Dy is a maximum value of 1st
order derivatives within the red edge of 61 bands

Gong et al. (2002)

kr Wavelength at Dr kr is wavelength position at Dr Gong et al. (2002)
SDr Sum of 1st derivative values within

red edge
Defined by sum of 1st order derivative values of 61 bands
within the red edge

Gong et al. (2002)

Continuous removal
transformed spectral
features

Dep The depth of the feature minimum
relative to the hull

In the range of 550–750 nm Pu et al. (2003,
2004)

Wid The full wavelength width at half DEP
(nm)

In the range of 550–750 nm Pu et al. (2003,
2004)

Area The area of the absorption feature that
is the product of DEP and WID

In the range of 550–750 nm Pu et al. (2003,
2004)

Hyperspectral vegetation
indices

NBNDVI Narrow-band normalised difference
vegetation index

(R850 � R680)/(R850 + R680) Thenkabail et al.
(2000)

NRI Nitrogen reflectance index (R570 � R670)/(R570 + R670) Filella et al. (1995)
TVI Triangular vegetation index 0.5[120(R750 � R550) � 200(R670 � R550)] Broge and Leblanc

(2001)
PRI Photochemical/Physiological

Reflectance Index
(R531 � R570)/(R531 + R570) Gamon et al.

(1992)
PhRI The Physiological Reflectance Index (R550 � R531)/(R550 + R531) Gamon et al.

(1992)
CARI Chlorophyll absorption ratio index (|(a670 + R670 + b)|/(a2 + 1)1/2) � (R700/R670) a = (R700 � R550)/

150, b = R550 � (a � 550)
Kim et al. (1994)

TCARI The transformed chlorophyll
absorption and reflectance index

3[(R700 � R670) � 0.2(R700 � R550)(R700/R670)] Haboudane et al.
(2004)

MCARI Modified chlorophyll absorption ratio
index

[(R701 � R671) � 0.2(R701 � R549)]/(R701/R671) Daughtry et al.
(2000)

RVSI Red-Edge Vegetation Stress Index [(R712 + R752)/2] � R732 Merton and
Huntington
(1999)

PSRI Plant Senescence Reflectance Index (R680 � R500)/R750 Merzlyak et al.
(1999)

ARI Anthocyanin Reflectance Index ARI = (R550)�1 � (R700)�1 Gitelson et al.
(2001)

Broad band spectral
features

RG Reflectance of green band Within the range from 520 to 600 nm (Referred to RSR
of Landsat-5 TM)

RR Reflectance of red band Within the range from 620 to 690 nm (Referred to RSR
of Landsat-5 TM)

RNIR Reflectance of near-infrared band Within the range from 760 to 960 nm (Referred to RSR
of Landsat-5 TM)

SR Simple ratio RNIR/RR Baret and Guyot
(1991)

NDVI Normalized difference vegetation
index

(RNIR � RR)/(RNIR + RR) Rouse et al. (1973)

MSR Modified simple ratio (RNIR/RR � 1)/((RNIR/RR)0.5 + 1) Chen (1996)
GNDVI Green normalized difference

vegetation index
(RNIR � RG)/(RNIR + RG) Gitelson et al.

(1996)
RDVI Re-normalized difference vegetation

index
(RNIR � RR)/(RNIR + RR)0.5 Roujean and

Breon (1995)
NLI Non-linear vegetation index (R2

NIR � RR)/(R2
NIR + RR) Goel and Qi

(1994)
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was adopted to assess the performance of the regression models
based on Seymour (1993). To get an estimated DI for a sample, all
the other 113 samples (114 � 1 = 113 samples) were used to con-
struct a PLSR or MLR model, which was then applied to estimate
the DI for the leave-out sample. After a full rotation, a total of 114
DI estimates could be obtained. In addition, the estimates from
the model that was fitted by using all 114 samples were also
presented in the result section, called ‘‘training approach’’, in order
to differentiate it from the ‘‘cross validation approach’’.

2.5. Discriminant analysis of disease levels

Before conducting discriminant analysis of disease levels, a two-
sample difference t-test was conducted to assess the ability of the
32 SFs in separating the three health levels: normal, slightly-dam-
aged and heavily-damaged leaves. Based on the discriminating
power of the SFs, the Fisher linear discriminate analysis (FLDA)
was applied to establish optimal discriminant models (McLachlan,
2004). Using the same method as the regression analysis, both the
training approach and the leave-one-out cross validation approach
were utilized to evaluate identifying each sample into one of the
three health levels. In addition, due to the inherent ability of the
cross validation approach in eliminating the over-fitting phenom-
enon, it was also used to assess the generation of optimal discrim-
inant models. Finally, overall accuracy (OAA), average accuracy
(AA), producer’s accuracy, user’s accuracy, and kappa coefficient
were calculated from confusion matrices to evaluate the accuracies
of the discriminant analysis. In this study, both MLR and FLDA
analyses were implemented in SPSS 19.0 while the PLSR was run
by using SAS PLS procedure (SAS 9.2).

3. Results

3.1. Spectral curves of powdery mildew

Fig. 2 illustrates curves of raw reflectances, first-derivative
spectra, and reflectance ratios of slightly-damaged (3% < lesion
portion < 30%) and heavily-damaged (lesion portion > 30%) leaf
spectra to normal spectrum (by averaging all the measurements
from normal leaves and leaves with a lesion portion <3%). From
Fig. 2a and c, it is easy to see that the spectral difference between
normal and slightly-damaged leaves is much smaller than that be-
tween normal and heavily-damaged leaves especially in the visible
region. In general, compared to normal leaves, raw reflectances of
diseased leaves exhibit a significant increase in the visible spectral
region from 520 to 720 nm while in the NIR region, such a differ-
ence between the raw reflectnces is insignificant with a slight de-
crease of the diseased leaf spectra. The differences of the first
derivative spectra (Fig. 2b) between normal, slight-damaged and
heavy-damaged leaves are noticeable in the regions from 510 to
530 nm and from 690 to 740 nm, which locate in the green edge
and red edge regions. The ‘‘blue shifting’’ phenomenon of red edge
positions for the diseased leaves in Fig. 2b is significant. In this
case, it does confirm that the technique of extracting red edge opti-
cal parameters from hyperspectral data can be used to diagnose a
plant’s health level (Miller et al., 1991; Baret et al., 1994).

3.2. Regression analysis

Table 2 summarizes the results of correlation analysis between
each of the 32 SFs and DIs of the114 samples. It turns out that 29
SFs significantly correlate with DI (p-value < 0.05). Of them, six SFs
have an absolute R value over 0.8. They are GNDVI, Wid, MCARI, RG,
SDb and CARI; 18 SFs have an absolute R value over 0.7; and 20 SFs
have an absolute R value over 0.6. It is interesting to observe that

the broad band SFs perform well in the correlation analysis with
the sample DI values in this particular study, eight out of nine
SFs achieving an absolute R over 0.6.

In order to establish the regression models to estimate the DI
value, all 32 SFs were used to create the PLSR model. The relative
RMSE values were used to judge how many components should
be retained in the PLSR model. Based on a cross validation result,
the model composed of seven components yielded the smallest rel-
ative RMSE. Therefore, this PLSR model was adopted to estimate
the DI value. Correspondingly, the MLR model with the best seven

Fig. 2. Curves of raw reflectances, first derivative spectra and reflectance ratios of
diseased leaf spectra to normal spectrum. (a) Raw reflectance curves of normal,
slightly-damaged (3% < lesion portion < 30%) and heavily-damaged leaves (lesion
portion >30%); (b) first derivative spectral curves of normal and diseased leaves; (c)
reflectance ratio curves of slightly-damaged and heavily-damaged leaf spectra to
normal spectrum.
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SFs (by making MLR and PLSR have the same dimensions) was con-
structed as well. The R2 and the relative RMSE values, produced by
both PLSR and MLR models using both training approach and cross
validation approach were summarized in Table 3. The accuracies of
the PLSR model were consistently higher than those of the MLR
model. The degree of over-fitting can be explicitly illustrated by
using a cross validation approach because in each estimation pro-
cess, the training sample and test sample are separated. In Table 3,
it is obvious that for PLSR model, the values of R2 and RMSE are
better than those of MLR, regardless of whether the training ap-
proach or cross validation approach was used. In Fig. 3, with the
cross validation approach, the scattering points between estimated
DIs and measured DIs for PLSR are more closely distributed along
the diagonal line (1:1 dash line) than those for MLR, indicating that
PLSR has produced a relatively smaller residual error than MLR.
Therefore, it is feasible to draw the conclusion that PLSR can pro-
vide more accurate estimation of DI than MLR.

3.3. Discrimination analysis

Other than estimating the DI value in a continuous manner by
regression analysis, we also attempted to determine the disease
severity levels of leaves in a discrete manner by discrimination
analysis. Table 4 summarizes the ability of the 32 SFs in separating
normal, slightly-damaged and heavily-damaged samples, evalu-
ated by a p-value of the Independent t-test in SPSS. The rankings
of all SFs that are given in Table 4 can be interpreted as their sen-
sitivity to the disease severity levels. The rankings of the 32 SFs ap-
pear to be generally consistent with the pattern in Table 2.
However, some slight differences still exist, e.g., the GNDVI was
ranked 1st in Table 2, whereas it was ranked 2nd in Table 4. These
subtle differences might be associated with the different analysis
methods (regression and discrimination) and the different data
presentation forms of the disease severity (continuous and dis-
crete). As shown in Table 4, based on the p-value, there are seven

Table 2
Summary of correlation analysis between SFs and DI (n = 114).

Ranking SFs R R2 p-Value Ranking SFs R R2 p-Value

1 GNDVI �0.889 0.790 0.000 17 SR �0.728 0.530 0.000
2 Wid �0.872 0.760 0.000 18 RR 0.720 0.518 0.000
3 MCARI 0.858 0.736 0.000 19 SDr �0.645 0.416 0.000
4 RG 0.855 0.731 0.000 20 PSRI 0.631 0.398 0.000
5 SDb 0.827 0.684 0.000 21 SDy �0.573 0.328 0.000
6 CARI 0.825 0.681 0.000 22 PRI �0.565 0.319 0.000
7 Dy 0.784 0.615 0.000 23 PHRI 0.509 0.259 0.000
8 NLI �0.781 0.610 0.000 24 NRI 0.457 0.209 0.001
9 kr �0.768 0.590 0.000 25 Dep �0.454 0.206 0.002

10 Area �0.768 0.590 0.000 26 ARI 0.454 0.206 0.003
11 RDVI �0.767 0.588 0.000 27 Dr �0.441 0.194 0.003
12 Db 0.766 0.587 0.000 28 ky �0.343 0.118 0.003
13 NDVI �0.762 0.581 0.000 29 RNIR �0.237 0.056 0.026
14 MSR �0.739 0.546 0.000 30 kb �0.111 0.012 0.484
15 NBNDVI �0.735 0.540 0.000 31 RVSI 0.061 0.004 0.701
16 TCARI 0.731 0.534 0.000 32 TVI �0.052 0.003 0.745

R represents the coefficient of correlation; R2 represents the coefficient of determination, and all the SFs were ranked by R2; p-value is the probability of accept the null
hypothesis.

Table 3
Summary of accuracies of regression models for DI estimation (n = 114).

Statistics PLSR MLR

Training approach Cross validation approach Training approach Cross validation approach

R2 0.86 0.80 0.81 0.64
Relative RMSE 0.18 0.23 0.23 0.32

Fig. 3. Scatter plots between measured DI and estimated DI using cross validation approach. (a) PLSR model based on the seven components; (b) MLR model based on the
seven best SFs.
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SFs that are significant at 0.999 confidence level for all three pairs,
and 12 SFs that are significant at 0.950 confidence level. For the
remaining SFs, they exhibit a significant mean difference in at least
one pair, except for ky, kb and RNIR, which fail to show any signifi-
cant differences in all three pairs.

For those SFs with high sensitivity to leaf powdery mildew,
models for identifying normal, slightly-damaged and heavily-dam-
aged leaves were developed using the Fisher linear discriminate
analysis (FLDA). To establish a discriminate analysis (DA) model
with the highest discriminating power, an important question is
how many spectral features should be included in the model. Based
on this consideration, prior to FLDA, we conducted a feature selec-
tion process as shown in Fig. 4. Although the variation trend of the
AA curve turned out to be monotonous when using the training ap-
proach, there is a knee point at seven (SFs) based on the result of
the cross validation approach (Fig. 4), where the AA reaches the
highest value in this particular test. The AA value decreasing after
seven variables might be attributed to an over-fitting problem. It
could be also considered as redundant information preserved in
those variables after seven. Based on this result, the best seven
SFs (referring to the ranking order in Table 4, including five hyper-
spectral SFs and two broad-band SFs) were retained for developing

the discriminating model. In addition, the performance of the mod-
el that was constructed by the best seven broad-band SFs (referring
to the ranking order in Table 4 for broad-band SFs only) was also
examined. The means and standard deviations of the best seven
SFs and the best seven broad-band SFs were presented in Fig. 5.
It is obvious that the spectral differences of the best seven SFs be-
tween normal, slightly-damaged and heavily-damaged leaves are
more significant than those of the best seven broad-band SFs. This
implies that hyperspectral data would be more powerful in dis-
criminating the three health levels than multispectral data.

The coefficients of the best seven SFs (optimal-model) and the
best seven broad-band SFs (broad-band-model) were listed in Ta-
ble 5. In the broad-band-model, the coefficients for both RR and
MSR are zero. The classification results with both training ap-
proach and cross validation approach were listed in two confusion
matrices for the optimal-model (Table 6) and two confusion matri-
ces for the broad-band-model (Table 7). By comparing several
accuracy indices in Tables 6 and 7, it is easy to see that the classi-
fication results of the three health levels produced by the optimal-
model are better than those produced by the broad-band-model.
This is due to relatively high spectral differences of the seven best
SFs between the three health levels (Fig. 5). However, the broad-
band-model can also yield an acceptable accuracy, although its
classification accuracy is not as high as that of the optimal model.
In general, whether using the training approach or the cross valida-
tion approach, both models are able to generate relatively high
accuracies of classification for the three health levels. When focus-
ing on individual health levels’ discriminant results, it is noticeable
that higher producer’s and user’s accuracies (>0.9) were achieved
for the heavily-damaged class with both models compared to the
other two health levels. The latter has around 80–90% accuracies
by using the optimal-model and around 70–80% accuracies by
using the broad-band-model.

4. Discussion

The spectral response of powdery mildew was first observed by
Lorenzen and Jensen (1989). In their study, they found that the dis-
ease severity of leaves become explicit with the passage of time
after they were inoculated. The longer the time after the plants
were inoculated, the more serious symptoms would become. How-
ever, to measure different severity degrees of powdery mildew on
plant leaves from different developing stages of the disease would

Table 4
Summary of independent t-test of 32 SFs (n = 114).

Ranking SFs Significance (p-value) Ranking SFs Significance (p-value)

Normal vs. slight Slight vs. heavy Normal vs. heavy Normal vs. slight Slight vs. heavy Normal vs. heavy

1 MCARI *** *** *** 17 NDVI *** ***

2 GNDVI *** *** *** 18 RDVI *** ***

3 CARI *** *** *** 19 RR
*** ***

4 SDb
*** *** *** 20 SDy

*** ***

5 RG
*** *** *** 21 NLI *** ***

6 Db
*** *** *** 22 PhRI ** ***

7 Wid *** *** *** 23 Dr
*** **

8 Dy
** *** *** 24 SDr

** ***

9 kr
*** ** *** 25 NRI *** **

10 TCARI *** * *** 26 RVSI *** *

11 PSRI *** * *** 27 PRI ** *

12 Area * *** *** 28 Dep *

13 SR *** *** 29 TVI *

14 MSR *** *** 30 ky

15 ARI *** *** 31 kb

16 NBNDVI *** *** 32 RNIR

* Mean difference is significant at 0.950 confidence level.
** Mean difference is significant at 0.990 confidence level.
*** Mean difference is significant at 0.999 confidence level.

Fig. 4. Variation of classification accuracy with number of variables for both all-
fitted approach and cross validation approach. The classification method employed
is the Fisher linear discriminate analysis (FLDA).
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inevitably bring about a mixture phenomenon of phonological
change signals, with the disease induced signals of the plant leaves.
To deal with this imperfection, the present study attempted to
determine the severity level of a leaf directly based on the cover
percentage of pustule on a leaf, which could thus exclude the
phonological impact.

According to existing studies, the change of reflectance that oc-
curs in diseased leaves is driven by the breakdown of chlorophyll
pigments and subsequent changes in the carotenoids, anthocya-
nins and xanthophylls pigments (Gamon et al., 1992; Penuelas
et al., 1994; Devadas et al., 2009), as well as the breakdown of
the cell structure. These processes could lead to corresponding

Fig. 5. Means (bar) and standard deviations (short line) of selected SFs in normal, slightly-damaged and heavily-damaged classes. (a) The best seven SFs; (b) the best seven
broad-band SFs. Some SFs were adjusted by multiplying a coefficient to enhance the comparability among them.

Table 5
A summary of discriminant coefficients in FLDA models (n = 114).

Spectral feature Seven best SFs Spectral feature Seven broad-band SFs

Normal Slight Heavy Normal Slight Heavy

Db �2733 �2793 �2753 RG 1452 1452 1452
SDb 317 322 320 SR �566 �567 �567
Wid 239 243 245 NDVI 88,200 88,210 88,200
RG 408 399 399 GNDVI 294 284 269
GNDVI 3034 2807 2564 RDVI �4579 �4578 �4577
CARI 25 25 25 RR 0 0 0
MCARI �392 �360 �354 MSR 0 0 0
(Constant) �17,620 �17,870 �18,050 (Constant) �23,460 �23,460 �23,450
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changes of reflectance in the visible and NIR spectral regions in
general, particularly around 470, 670 (absorption of chlorophyll),
550 (green peak), and 730 nm (red edge) (West et al., 2003; Sank-
aran et al., 2010). In our study, it is obvious that the spectral reflec-
tances at all these particular positions respond significantly to
powdery mildew (Fig. 2). However, the spectral responses turn to
be weak and invisible after 730 nm in the NIR region (reflectance
ratios are around 1.0), which confirms the results reported by other
researchers (see Fig. 2 in Lorenzen and Jensen (1989)). Theoreti-
cally, the breakdown of the cell structure is assumed to reduce
the reflectance in the NIR region. In addition to the breakdown of
pigments and the destruction of cell structures, the powder on
the leaf’s surface also plays an important role in altering the leaf’s
spectrum. The white color of pustules could increase the reflec-
tances in both visible and NIR regions, which might offset the influ-
ence from the breaking of cell structures, and make the reflectance
change in the NIR region insignificant. The same impact from pus-
tule color was also observed by Devadas et al. (2009).

As mentioned in Sections 3.2 and 3.3, it is encouraging to find
that most SFs in Table 1 are sensitive to the powdery mildew, par-
ticularly for those broad-band SFs, which exhibit great potential in
detecting powdery mildew (Tables 2 and 4) with multispectral
data. For regression analysis, with the same number of components
(variables for MLR model) as inputs, the PLSR model outperformed
MLR model according to the accuracy indices created with the
cross validation approach. A great advantage of PLSR over a tradi-
tional regression method is its capability in not only lowering
dimensionality of the raw data but retaining majority of variance
contained in the raw data as well. For example, in the present
study, 32 variables were reduced to seven components that were

actually combinations of those raw variables. Such a transforma-
tion facilitates the concentration of principal information of inde-
pendent variables and also helps eliminate the correlations
between components (Li et al., 2002; Faber and Rajkó, 2007). Since
the MLR model just used the seven selected variables (without
considering using information from remaining variables), it is easy
to understand why it performed much poorer than the PLSR in this
particular case. Therefore, the PLSR method is suggested to be ap-
plied for estimating the disease severity with leaf spectral mea-
surements although it is more difficult to interpret the PLSR’s
result than MLR’s.

In addition to the regression analysis, the discrimination analy-
sis also yielded satisfactory results in this study (Tables 6 and 7).
However, the successful rates of classification were not equal
among the different health levels. The heavily-damaged leaves
could be accurately identified using the cross validation approach
with both the user’s and producer’s accuracy over 90% for both of
the discriminating models, the optimal-model and the broad-
band-model. In comparison to the heavily-damaged samples, the
successful rates of the other two levels were around 70–80% using
the cross validation approach, which indicated that there existed a
certain degree of confusion between them. To explore the cause for
the different success rates among the three health levels, mean dif-
ference tests of the pigment contents between any two levels
(pairs) of the three levels were conducted using an independent
t-test in SPSS. The test results were summarized in Table 8. Per
the table, significant differences were found for Chla, Chlb, Chla+b
and Car contents between normal and heavily-damaged samples
and between slightly-damaged and heavily-damaged samples.
However, for the pair of normal and slightly-damaged samples,

Table 6
Confusion matrices created based on both all-fitted approach and cross validation approach for the optimal-model.

Reference U.’s a. (%) OAA AA j

Normal Slight Heavy Sum

All-fitted approach
Classified Normal 30 5 0 35 85.71 0.92 0.93 0.88

Slight 4 43 0 47 91.49
Heavy 0 0 32 32 100.00
Sum 34 48 32 114
P.’s a. (%) 88.24 89.58 100.00

Cross validation approach
Classified Normal 30 6 0 36 83.33 0.89 0.90 0.84

Slight 4 41 1 46 89.13
Heavy 0 1 31 32 96.88
Sum 34 48 32 114
P.’s a. (%) 88.24 85.42 96.88

Note: OAA is overall accuracy; AA is average accuracy; P.’s a. represents producer’s accuracy; U.’s a. represents user’s accuracy.

Table 7
Confusion matrices based on both all-fitted approach and cross validation approach for the broad-band-model.

Reference U.’s a. (%) OAA AA j

Normal Slight Heavy Sum

All-fitted approach
Classified Normal 29 7 0 36 80.56 0.88 0.88 0.81

Slight 5 41 2 48 85.42
Heavy 0 0 30 30 100.00
Sum 34 48 32 114
P.’s a. (%) 85.29 85.42 93.75

Cross validation approach
Classified Normal 27 9 0 36 75.00 0.83 0.84 0.75

Slight 7 38 2 47 80.85
Heavy 0 1 30 31 96.77
Sum 34 48 32 114
P.’s a. (%) 79.41 79.17 93.75

Note: See Table 6 for explanations of the accuracy index abbreviations in the table.
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the differences of those pigments were not significant at 0.95 con-
fidence level. Such a pattern of pigments differences between the
three health levels was in a good agreement with the pattern re-
vealed by the spectral discrimination analysis, which could be
viewed as a physical basis of the spectral discrepancies among dif-
ferent health levels. In addition, compared to the normal and
slightly-damaged samples, the higher cover percentage of pustule
on leaves of heavily-damaged samples would increase the spectral
separability between them due to the significant difference of the
leaf color. Therefore, to effectively make use of the remote sensing
techniques for detecting powdery mildew in practice, it is sug-
gested that a high accuracy could be guaranteed only if the cover
percentage of pustule on leaves is over 30%. As for different model
forms, although the accuracy of the broad-band-model was slightly
lower than that of the optimal-model, such an accuracy was still
acceptable, with the OAA of 0.83 and the j coefficient of 0.75. Un-
like some plant diseases detected by using only relatively narrow
band data (Huang et al., 2007; Devadas et al., 2009), the relatively
broad band and strong spectral response of powdery mildew allow
us to detect or discriminate the disease by using commonly used
multispectral remote sensing systems, which could thus lower
the cost of the operation significantly (West et al., 2003; Hahn,
2009; Sankaran et al., 2010). For example, with routine multispec-
tral Landsat TM products, it is possible to map the spatial distribu-
tion of powdery mildew in a winter wheat field in the season of the
disease occurrence.

5. Conclusions

The remote detection of powdery mildew infection would be of
value for monitoring the disease and offering a direction of fungi-
cide spray tasks. In this study, it was found that the powdery mil-
dew could induce a significant spectral change in both visible and
NIR regions, which enables the detection of the disease by remote
sensing means. PLSR and FLDA were demonstrated to be efficient
in estimating and discriminating the disease severity levels using
the selected spectral features. It is encouraging that those selected
broad-band spectral features exhibited great potential in detecting
powdery mildew at a leaf level with commonly used multispectral
remote sensing data, such as Landsat TM data.

However, in field conditions, it remains challenging to upscale
the relationship between spectral features and disease severity to
canopy level. Apart from the traits on the leaves that are induced
by powdery mildew, the leaf architecture, multiple scattering
phenomena in canopy reflectance as well as the other possible
stressors such as drought and insufficient of nitrogen can also have
a certain impact on canopy spectra, which may complicate the
relationship between spectral features and disease severity lev-
els. In our further studies, some physically-based models for simu-
lating the radiometric transfer process in the canopy, such as
PROSPECT + SAIL, will be incorporated in the up-scaling process.
Studies addressing the above questions are necessary in the
future.
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