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Abstract. This paper aims to investigate the soil fertility of Shunyi District’s cropland combing 

remote sensing and ground census data based on the Geostatistical Analyst of ArcGIS. Firstly, 

Landsat TM image was used to identify the spatial distribution and estimate the cropland plot area 

using support vector machine (SVM) classification method, and the overall classification is 91.5 % by 

435 field survey points. Then, the survey indicators were added to ArcGIS such as organic matter, 

available P, available K, total N, soil pH, etc. After exploring the sample data for each indicator, trend 

surfaces were generated using the optimum prediction models after cross validation. Finally, 

according to the identified cropland plots, the soil quality index (SQI) was derived to map the soil 

fertility of the study area. The result shows that the southwestern part and northeastern corner of this 

district were found to be high in soil pH, which lies in between 8.2 and 8.6. Additionally, wide 

variability of organic matter, total N, available P and K were noted which can be due to the extent of 

cultivation in these areas while the change in fertility level could be due to anthropogenic influence. 

When considering the soil heavy metals, Zn, Fe, Cu and Mn show almost the same distribution.  

Introduction 

As one of the most important agricultural resources, cropland is the basic survival condition for 

human being. Accurate information on cropland area and soil fertility is of critical importance for 

assessing food security [1]. Soil fertility refers to the amount of nutrients in the soil, which is 

sufficient to support plant life. Loss of soil fertility can cause soil degradation, which may not only 

undermine soil productivity, but may also affect environmental health [2]. In addition, assessing the 

soil fertility can be also very essential to accurately spray chemical fertilizers for farmers in order to 

reduce the enviromental pollution. On the other hand, soil fertility is the measure of the ability of the 

soil to supply essential nutrients in the right amounts, and at the correct proportion at the right time 

[3]. However, the fertility of soil is also determined by the quality of soil physical properties. 

Deterioration of soil structure due to reasons such as soil erosion, poor land management practices, as 

well as a failure of soils to supply nutrients in the correct amount and and the right time, are indicators 

of land degredation [4]. What’s more, various kinds of human activities have greately changed the 

cropalnd landscape in recent years. As a result, it is so urgent to find out an effective way to assess the 

soil fertility especially as the cropland area decreasing and the population growing.  

Remote sensing is an essential tool to identify and assess the cropland quality because it facilitates 

observations across larger extents of Earth’s surface than is possible by ground-based observations. 

With the increasing development of aerospace technology, various sensors mounted on air- and 

space-borne platforms can yield aerial photographs, satellite imagery, RADAR and LiDAR datasets. 

Data available from remote sensing vary from the very high-resolution datasets produced irregularly 

over extents no larger than a single state or province, to regional datasets produced at regular intervals 
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from satellites (e.g. Landsat, SPOT), to the lower-resolution (> 250 m) datasets now produced across 

the entire Earth on a daily basis (e.g., AVHRR, MODIS). Those remotely sensed iamgey have been 

widely applied in the assessment of soil fertility [5-7]. In this study, Shunyi District of Beijing is 

selected as the study area and Landsat TM image and ground census data were jointly used to 

investigate the soil fertility of cropland. 

Description of the study area 

Shunyi District lies to the northeast of central Beijing, about 30 kilometers from the centre. It is 

located between latitudes 40°00'-40°18' N and longitude 116°28'-116°58' E. The total area is        

1,021 km
2
 and it has a population of 593,000, of which 419,000 are permanent agricultural residents 

(Beijing Statistical Office, 2001). Shunyi has a warm temperate wet continental monsoon climate. Its 

average annual temperature is 11.5 °C, that in January 4.9 °C, and in July 25.7 °C. The lowest 

temperature in January is -19.1 °C and the highest in July is 40.5 °C. The frost-free period lasts around 

195 days. Annual sunshine duration is 2,750 hours and average annual relative humidity is about 

50%. Average annual precipitation is about 625 mm, 75% of which falls in summer. It has a fertile 

soil ranging from sandy to loamy soils and the topography is mostly plains with a small remote hilly 

area, so Shunyi District is a farming community [8]. In this study area, arable cropping, residential and 

industrial use and forest are the three major land use types. In the past decades, land use in Shunyi has 

undergone a quick change due to the fast economic growth and urbanization, characterized by 

conversion of arable land into built-up and green area. 

Data Sources and Preprocessing 

A Landsat TM image to cove the whole study area of 2010 was acquired, which has six optical bands 

(visible plus near- and mid-infrared) with 30 m resolution. It retains as much of the original 

radiometric and geometric properties as possible and was just systematically processed by radiometric 

and geometric corrections. Therefore, accurate radiometric and geometric corrections must be firstly 

performed. In this study, radiometric calibration and atmospheric correction of Landsat TM were 

processed using the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) 

atmospheric correction module which is integrated in the ENVI image processing & analysis 

software. In addition, topographic relief also exerts a great influence on identifying croplands, so 

topographic correction must be also performed. The commercial ERDAS Imagine processing 

software was used to co-register and orthorectify the Landsat TM image using the orthocorrection 

model of Leica Photogrammetry Suite (LPS) and ASTER 30 m resolution DEM (Digital Elevation 

Model). As a result, the RMSE (Root Mean Squared Error) was less than 0.5 pixel which meets the 

accuracy requirement of geometric correction and the nearest neighbor method was used for image 

resampling. Additionally, field survey was also performed to derive the ground census data of soil 

fertility.  

Methodology 

SVM Classification Method. Support Vector Machine (SVM) is a new popular supervised 

classification algorithm, because of its ability to “learn” classification rules from a set of training data, 

and moreover it is fit for processing the high dimensional data [9, 10]. It is a classification technique 

derived from statistical learning theory and sorts out the classes with a decision surface that 

maximizes the margin between the classes. The SVM training algorithm promises to obtain the 

optimal separating hyperplane for a training data set in terms of generalization error. The support 

vectors are the critical elements of the training set. In this study, the commercially available software 

ENVI 4.5 was used to perform the SVM classification. Given a set of samples x, x= {(x1, y1), (x2, y2), 

…, (xk, yk)| xi∈R
N
, yi∈(−1, +1)} where i=1, 2,…, k and R

N
 is the N-dimensional space. The general 

optimal classification function is described as in Eq. 1. 
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where, xi and xj are the training vectors; k is the total number of samples, and K(xi, xj) is called the 

kernel function. The main function of such a kernel is to map the training vectors into a higher 

dimensional space, and its choice is very crucial for obtaining perfect classification performance. In 

general, there are mainly four types of kernels: linear, polynomial, radial basis function (RBF) and 

sigmoid. The RBF is one of the commonly used kernel functions and works well in most cases. Some 

applications have proved that the SVM detects the study targets more accurately with a lesser false 

alarm rate [11, 12]. In our experiment, RBF was chosen as the kernel function for SVM classification. 

Geostatistical Analysis. Geostatistical analysis is an approach to applying statistical analysis and 

other informational techniques to geographically based data. Such analysis employs spatial software 

and analytical methods with terrestrial or geographic datasets, including geographic information 

systems and geomatics [13]. Geostatistical method uses variogram (semivariance) and Kriging 

interpolation as the basic tools, which can be used to study the various variables with randomness and 

structure. Kriging interpolation uses the known data point to estimate the unknown point (X0). The 

nature of this method is to derive a weighted average by local estimation (Eq. 2). In this study, ArcGIS 

Geostatistical Analyst (AGGA) was used to explore the soil fertility of cropland and it builds a bridge 

between statistics and GIS. AGGA is an extension to ArcGIS desktop that provides tools for spatial 

data exploration and surface generation and it provides a suite of statistical models and tools for 

spatial data exploration and surface generation. 
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where, Z(X0) is the inner-interpolation value on the X0 point, and Z(Xi) is the measured value around 

the X0 point. 

Soil Fertility Assessment. In this study, soil samples were collected and analyzed as an input for 

the soil fertility capability classification (FCC), and soil fertility index (SFI) was used to assess the 

soil fertility. In each sampling region, essential features necessary for site characterization were 

specifically gathered in the area. For each sample, several physicochemical parameters were collected 

such as organic matter, available P, available K, total N, soil pH, exchangeable Zn, etc. These samples 

were analyzed for nutrient availability indicators based on the minimum data set (MDS) for FCC and 

SFI determinations. Here, the SFI was obtained following the conceptual model developed by 

Andrews et al. [14]. In this quantitative soil quality evaluation method, the soil management 

assessment framework (SMAF) is designed to follow three basic steps: indicator selection, indicator 

interpretation, and integration into a soil quality index (SQI) value (Eq. 3). The final step is 

accomplished by summing the scores for each indicator, dividing by the total number of indicators, 

and then multiplying by 10. When the cropland plots were indentified from Landsat TM image using 

the ENVI-SVM classification module, they were input into the SMAF assessment framework by 

integrating soil census data. 
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where, S represents the scored indicator value and n is the number of indicators in the MDS. 

Results and Discussions 

Cropland Plots Identification. The land of the study area account for most of the agricultural land, 

so those regions covered by field crops, vegetables and flowers, were assigned to cropland and all 

other land cover types were classified as non-cropland. Additionally, it must be mentioned that 

perennial tree crops (including fruit trees) which present very little percentage were classified into 
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non-crop classes. Owing to the similar spectral reflectance features with forest, it is very difficult to 

exclude the tree crops from forest without the support of other ancillary data. As a result, an exclusion 

method was applied to the Landsat TM classification data to produce the crop/non-crop map. At the 

initial stage, non-vegetation area including water area, built-up area and grassland were derived. Then, 

forestland map was produced. After extracting the forest and non-vegetation land, the rest land was 

treated as cropland plots. In order to evaluate the identification accuracy of croplands, 435 sample 

points was used. The result shows that 398 points are classified as cropland and the overall accuracy is 

91.5% (398/435*100%). Fig. 1 shows the original Landsat TM image and the identified croplands. It 

is clear that the croplands distribute almost everywhere in the study area besides the Southwestern 

regions and Northeastern corner because of built-up areas and forestland. 

 

Fig. 1 (a) Original Landsat TM false color composite image by Blue band (TM1), Green band (TM2) 

and Red band (TM3) (b) is the identified croplands of Shunyi District, Beijing. 

Classification of Soil Fertility. In order to derive the SFI, among the survey indicators, organic 

matter, available P, available K, total N, soil pH, Zn, Fe, Cu, and Mn were selected as the MSFI 

(Minimum Soil Fertility Indicators). With these indicators, samples collected in the study were 

analyzed to assess the soil fertility. On the analysis platform of AGGA, the sample points for each 

indicator were interpolated into trend surfaces for reflecting the spatial distribution and variation of 

soil nutrient (Fig. 2).  

 

Fig. 2 (A) is the spatial distribution maps for each indicator (B) is the final SQI map to describe the 

soil fertility of the study area. 

As shown in Fig. 2, it is obvious that the southwestern part and northeastern corner of the district 

were found to be high in soil pH, which lies in between 8.2 and 8.6. Wide variability of available P 

and K were noted which can be due to the extent of cultivation in these areas, while the change in 

fertility level could be due to anthropogenic influence. Concerning the soil heavy metals, Zn, Fe, Cu 

and Mn show almost the same distribution. Likewise, organic matter and total N show also the almost 

same distribution rules. Owing to the land use types and human influence, the spatial variability for 
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each soil indicator shows the same or different change trends. As a whole, the soil fertility is better in 

the west eastern and northeastern parts than that in the western and northern parts. In the northwestern 

part, it is worse due to the human activities and land was changed to built-up areas. 

Conclusions 

Compared with traditional labor-intensive survey methods, remote sensing provides a fast, accurate, 

large-scale, affordable tool for detecting and mapping the soil fertility. In this study, some indicators 

were collected including organic matter, available P, available K, total N, soil pH, Zn, Fe, Cu, and Mn. 

Based on the analysis platform of AGGA, the sample points for each indictor were interpolated into 

trend surfaces. (1) As can be seen in Fig. 1 and Fig. 2, they show that the croplands distribute almost 

everywhere in the study area except the Southwestern part and Northeastern corner because of 

built-up areas and forest. (2) Owing to the different land use types and human influence, the spatial 

variability for each soil indicator shows the same or different change trends. (3) Taken as a whole, the 

soil fertility is better in the northwestern, southern and northeastern parts than that in the western and 

northern parts. In the northwestern part, it is worse due to the human activities and land was changed 

to built-up areas. Therefore, it can provide an effective solution to assess and map soil fertility by 

integrating remote sensing techniques with geostatistical functions of geographic information system. 
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