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Abstract To facilitate urban planning and management in
fast-growing metropolitan areas, it is highly necessary to
detect the spatiotemporal changes of different land cover
types. This study aimed at identifying Beijing’s land cover
types and detecting the characteristics of their spatiotemporal
changes using time series remote sensing and GIS techniques
from 1978 to 2010. A total of 16 Landsat MSS/TM/ETM+
images were collected during the spring and late summer
seasons. After preprocessing the dataset, artificial neural net-
work was used to perform the land cover classification.
Consequently, four maps were generated for 1978, 1992,
2000, and 2010, with six classes (agriculture, woodland,
grassland, water, urban, and barren land) according to the
level I classification scheme. Three transition matrices were
constructed to represent all possible changes that occur in the
landscape. The results showed that agriculture, barren land,
and grassland had an increase in area, while urban, water, and
woodland had a reduction within the study area. A total of
2,032.341 km2 agriculture was reduced and 2,359.146 km2

woodland was increased. In the three periods for 1978–1992,
1992–2000, 2000–2010, agriculture had the largest amount of
transfer out primarily to urban class around central urban areas

and woodland had the most transfer in mainly from barren
land in mountainous areas. More importantly, the driving
forces analysis including economic development, growth of
population and construction areas, and institutional policies
was conducted to find out the primary factors inducing the
land cover change.
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Introduction

Land is one of the most valuable natural resources for human
beings, which plays a pivotal role in human settlements, food
supply, economic, social and political activities, etc. As a
crucial carrier of various biophysical categories in the earth,
its surface is covered by different natural vegetation and man-
made features, such as vegetation regions (trees, bushes, lawns,
etc.), bare soil, hard surfaces (rocks, buildings, etc.) and wet
areas and bodies of water (sheets of water and watercourses,
wetlands, etc.) (Lambin and Strahler 1994). Furthermore, nat-
ural resource management, climate change, planning and mon-
itoring programs greatly depend on the accurate information
from land cover at a given spatial scale: local, regional, or
global (Lambin et al. 2003; Feddema et al. 2005; Youssef et al.
2011). At the same time, land cover change stemming from
human land uses represents a major source and a major ele-
ment of global environmental change (Turner II et al. 1994).
Different land cover types were found to markedly affect the
land use changes, so reliable information on land use/land
cover, especially at a global scale, is required to assist
in the solution of a wide range of environmental problems
(Flamenco-Sandoval et al. 2007; Tehrany et al. 2013; Biro
et al. 2013). Nevertheless, the land cover landscapes have
been suffering from rapid changes due to severe human-
related activities over the past dozens of years (Ramankutty

J. Zhao : L. Huang :D. Zhang
Key Laboratory of Intelligent Computing and Signal Processing,
Ministry of Education, Anhui University, Hefei 230039, China

W. Guo
College of Information and Management Science,
Henan Agriculture University, Zhengzhou 450002, China

W. Huang (*)
Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Beijing 100094, China
e-mail: yellowstar0618@163.com

H. Yang : L. Yuan
Beijing Research Center for Information Technology in Agriculture,
Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China

Arab J Geosci
DOI 10.1007/s12517-013-1072-5



and Foley 1999; Al-shalabi et al. 2012; Matinfar et al. 2013).
Consequently, it is quite important to make sure that they can
be used rationally under a long-term strategic management. To
recognize and manage the land resources, it is of great
importance to quickly identify and dynamically monitor the
land cover, especially at a large spatial scale and over long
time spans.

In practice, there are two primary methods to capture
information on land cover: field survey and remote sensing-
based analysis. Land cover information from conventional
ground-based data has significant deficiencies. For instance,
they are always acquired by statistical analysis from specific
sampling points and cannot represent the entire study area
well. It will also inevitably be a time-consuming and costly
process with low efficiency, especially at large spatial scales.
Conversely, the rapid development and advancement of re-
mote sensing technology provides an effective tool for mon-
itoring land cover at global, continental, regional, and local
scales (Sobrino and Raissouni 2000). In comparison with
traditional ground-based land cover maps, maps produced
from optical satellite data have advantages in spatial expan-
sion and statistical analysis, due to the continuous coverage
and internal consistency (DeFries and Townshend 1994).
Since the successful launch of the first satellite in the
Landsat satellite series in 1972, thousands of images from
the Multispectral Scanner (MSS), the Thematic Mapper
(TM), and the Enhanced Thematic Mapper Plus (ETM+) have
been extensively and successfully used in the identification of
land use/land cover information (Haack et al. 1987; Rogan
et al. 2003; Stathopoulou and Cartalis 2007). Over the past
years, different types of remote sensing data have been widely
used to identify land cover information. Stone et al. (1994)
have developed a map of the land cover of South America
based largely on multi-temporal National Oceanic and
Atmospheric Administration (NOAA) Advanced Very High
Resolution Radiometer (AVHRR) LAC (Local Area
Coverage) 1-km resolution data. Loveland et al. (2000) have
produced a 1-km resolution global land cover layer, named the
IGBP DISCover Product from the AVHRR dataset.
Kelarestaghi and Jeloudar (2011) detected the land use and
cover change of the Lajimrood Drainage Basin in northern
parts of Iran, based on 1:25,000 digital topographic maps
dated 1967 and 1994 and etM+ satellite image dated 2002.
In the previous studies based on remote sensing imagery, there
are usually two problems confronting the land cover: (1) how
to select appropriate remote sensing imagery and (2) how to
obtain more accurate identification accuracy.

With the fast development of social and economic activi-
ties, how to quickly monitor the land cover changes has been
paid special attention, especially in rapidly growing metropol-
itan areas. Land cover and its change have a significant impact
on rational and sustainable planning for regional resource
development, especially for the metropolitan areas with fast-

developing socioeconomic and human activities (Al-shalabi
et al. 2013). Beijing, as the capital of the People’s Republic of
China, is the country’s political, cultural, and educational
center. Its land cover categories are undergoing significant
changes, such as urban sprawl, forestry and agricultural land
reduction, etc. The importance of accurate and timely infor-
mation describing the nature and extent of land resources and
the corresponding changes over time is increasing. However,
it is always difficult to obtain the land cover and its change
features of Beijing using traditional statistical method. In
comparison with some low-resolution optical satellite data
(e.g., MODIS, NOAA/AVHRR), longer time span, wider
swath coverage, and higher spatial resolution make Landsat
imagery sufficient and reliable to be used in the characteriza-
tion of land use/land cover dynamic changes of Beijing.

In this study, a total of 16 Landsat MSS/TM/ETM+ images
were collected, which were mainly located during the spring
and late summer seasons. After performing the data prepro-
cessing, artificial neural network (ANN) was used to perform
land cover classification by integrating different kinds of
remotely sensed data and their derivatives. The specific ob-
jectives of this study were to (1) identify the land cover types
and dynamically monitor their spatiotemporal changes during
1978–2010, based on the Landsat time series imagery and
other ancillary data, and (2) more importantly, driving forces
analysis was performed to find out the primary influence
factors. This study can provide a methodological reference
for rationally performing the planning and management of
land resources at multiple spatial and temporal scales, espe-
cially in diversely changing metropolitan areas.

Materials and methods

The area selected for this study is Beijing Metropolis located
between 115°25′ and 117°30′ in longitudes and 39°26′ and
41°03′ in latitudes, which includes a diversity of land cover
types (Fig. 1). The topography is composed of mountains to
the north, northwest, and west and plain areas to the southeast.
There is a total land area of approximately 16,000 km2 in this
study area, among which mountainous areas account for
61.4 % and plain areas account for 38.6 %. It is administra-
tively divided by 14 urban and suburban districts and 2 rural
counties. Beijing has a monsoon-influenced humid continen-
tal climate, with an annual average temperature of 10–12 °C
and an annual average rainfall of more than 600 mm.

Selection of Landsat time series imagery

In general, different land cover types usually have specific
phenologies, especially for green plants. However, it is still
inevitable that mixed types are identified due to similar spectra
or textures among different types. Consequently, it is quite
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necessary that temporal differences need to be used for iden-
tifying pure types in accordance with their specific features. In
comparison with single temporal image, both the average and
the minimum separability of different types can be increased
by combining spring and summer images (Yuan et al. 2005).
Furthermore, multi-temporal images can also detect change
information for a certain type in specific time interval. In the
spring image, annual crops (e.g., soybean and maize) are
planted in the fields covered with bare soil, which can be
obviously distinguishable from forests that are already fully
leafed out at that time. Conversely, forests and some crops are
indistinguishable in the summer image due to their spectral
similarity. Nevertheless, those same croplands from urban
areas with significant amounts of asphalt and concrete and
other impervious surfaces that are spectrally similar to bare
soil in the spring image, so the late summer image has to be
required (Yuan et al. 2005)

The Landsat Program is the longest running exercise in the
collection of multi-temporal, multi-spectral, and multi-
resolution range of imagery appropriate for land cover analy-
sis. Landsat imagery has been available since 1972 from six
satellites, with three primary sensors evolving over 30 years:
MSS, TM, and etM+. To identify and map land use/land cover
more accurately, multi-temporal imagery have been shown to
be valuable and indispensible (Oettera et al. 2000). Two
scenes have to be required to cover the entire study area: paths
132 and133, row 32 for Landsat MSS sensor and path 123,
rows 32 and 33 for Landsat TM/ETM+ sensor. According to
the above selection scheme, a total of 16 cloud-free images
during 1978–2010 were collected from Global Land Cover
Facility (http://glcf.umiacs.umd.edu/data/landsat/) and Earth
Resources Observation (EROS) and Science Center (http://
glovis.usgs.gov/) (Table 1).

Data preprocessing and other ancillary data

The original Landsat data products were processed systemati-
cally, so some preprocessing procedures have to be performed
for subsequent analysis of land cover types and change detec-
tion. Geometric precision correction, radiometric and atmo-
spheric corrections, image mosaicing and masking were
conducted in ENVI (The Environment for Visualizing
Images) image processing system. All the images were recti-
fied to WGS 84/UTM zone 50N using a certain number of
well-distributed ground control points. The root mean square
errors were less than 0.5 pixel (40/15 m) for each of the 16
images. Subsequently, the orthocorrection was performed due
to the wide coverage of mountain areas in the study area. The
products of ASTER GDEM V2 (http://reverb.echo.nasa.gov/
reverb/) with a spatial resolution of 30 m were used to enhance
the image geometry by accounting for the significant spatial
distortion caused by relief displacement. To perform the
classification and accuracy validation, some reference data
were also collected including high-resolution satellite images
(e.g., SPOT, QuickBird, Beijing 1), field survey data, and
statistical data.

Classification criteria and methods

A classification criterion will be necessary when identifying
the land cover types in a certain region. This criterion is
required to be more generalized and each specific class could
be further divided into more subclasses in accordance with the
principal objective and regional land features. Considering the
land cover features and available data resources in the study
area, a six-class level I classification scheme (Table 2) was
specified by referring to the USGS Level I Land Use and Land

Fig. 1 Geographical location of the study area
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Cover Classification System, which is the most general and
allows for land classification at a small scale (>1: 250,000), and
is used for satellite imagery (Landsat) (Anderson et al. 1976).

After specifying the land cover classification scheme, an
effective classification method will be required to identify
each class. Traditional supervised and unsupervised classifi-
cation algorithms have been widely used in previous studies
on land use and land cover (Bolstad and Lillesand 1991;
Keuchel et al. 2003; Marçal et al. 2005). Nevertheless, most
of those methods usually depend on the decision or statistical
theories. It is inevitable that mixed pixels and obscure objects
will be produced in the process of classification based only on
statistical characteristics of spectral values. Conversely, ANN
classification algorithms have the capability of improving

automated classification accuracy due to their distributed struc-
ture and strong capability of handling complex phenomena,
which are relatively unaffected by differences amongst images
caused by the atmosphere, illumination, and surface moisture
(Sunar Erbek et al. 2004). As a consequence, various kinds of
ANN classifiers have recently been explored in remote sensing-
based land cover classification (Heerman and Khazenie 1992;
Kavzoglu andMather 2003). In our study, the back-propagation
neural network (BPNN) with eigenvector method was used to
identify the specified land cover types. To complete the classi-
fication process using such a method, five primary steps would
be required including preparing available sets of eigenvectors,
selecting the optimal combinations of eigenvectors, selecting
training sets for each type, designing neural network classifier
and setting corresponding parameters, and performing accuracy
assessment (Fig. 2).

Land cover change detection

In addition to identifying the land cover types and correspond-
ing amount of each type, it is more important to find out the
temporal transitions among different types as they can express
the detailed conversion information (Wu et al. 2008). In our
study, a multi-date post-classification comparison change de-
tection method was used to determine the changes in land
cover in three intervals: 1978–1992, 1992–2000, and 2000–
2010 (Jensen 2004). A five-step process will be required to
monitor the land cover change in geographic information
system (GIS) software: (1) preparing multi-date land cover
maps, (2) dissolving data for each map, (3) performing over-
laying analysis, (4) identifying the types and acreage of
changed regions, and (5) constructing a transition matrix.

Table 1 Captured Landsat time
series images during the
period 1978–2010

Acquisition date Path/row Sensor type Spatial resolution (m) Season

June 12, 1978 132/32 Landsat-2 MSS 80 Summer

September 12, 1978 132/32 Landsat-2 MSS 80 Late summer

June 22, 1978 133/32 Landsat-2 MSS 80 Summer

September 20, 1978 133/32 Landsat-2 MSS 80 Late summer

September 7, 1992 123/32 Landsat-5 TM 30 Late summer

September 7, 1992 123/33 Landsat-5 TM 30 Late summer

April 9, 1995 123/32 Landsat-5 TM 30 Spring

April 9, 1995 123/33 Landsat-5 TM 30 Spring

August 2, 1999 123/32 Landsat-7 ETM+ 30 Summer

August 2, 1999 123/33 Landsat-7 ETM+ 30 Summer

April 30, 2000 123/32 Landsat-7 ETM+ 30 Spring

April 30, 2000 123/33 Landsat-7 ETM+ 30 Spring

September 20, 2009 123/32 Landsat-5 TM 30 Late summer

September 20, 2009 123/33 Landsat-5 TM 30 Late summer

June 5, 2010 123/32 Landsat-5 TM 30 Summer

June 5, 2010 123/33 Landsat-5 TM 30 Summer

Table 2 Land cover classification scheme

Land cover type Brief description

Agriculture Cropland, pasture, and bare or fallow fields

Woodland Deciduous forest land, evergreen forest land,
mixed forest land, orchards, groves,
vineyards, and nurseries

Grassland Golf courses, lawns, and sod fields

Urban Residential, commercial services, industrial,
transportation, communications and utilities,
industrial and commercial, mixed urban or
build-up land, other urban or built-up land

Water Permanent open water, lakes, reservoirs, streams,
and estuaries

Barren land Dry salt flats, sandy areas other than beaches, bare
exposed rock, strip mines quarries, and gravel
pits, transitional areas, and mixed barren land
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Specifically, four maps were firstly generated and incorporated
into ArcGIS software environment. Then, the overlaying anal-
ysis was carried out to locate sites where these changes oc-
curred. Finally, a transition matrix A (Eq. 1) was constructed to
find out the magnitude and direction among different land
cover types. Based on gains and losses in each category shown
by the change matrix, land cover transfer images could be also
produced (Zhang et al. 2008). However, it is usually
transformed to a cross tabulation for showing quantitative data
of the overall land cover changes.

Aij ¼

A11 A12 A13 ⋯ A1n

A21 A22 A23 ⋯ A2n

A31 A32 A33 ⋯ A3n

⋯ ⋯ ⋯ ⋯ ⋯
An1 An2 An3 ⋯ Ann
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�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

ð1Þ

where n is the total number of land cover types, Aij indicates
the total amount of areal changes for a given class from class i
(row) to class j (column) during the temporal interval of t to
t +1, and both i and j vary from 1 to n .

Additionally, the comprehensive land cover dynamic de-
gree (LCDD) (Zhang et al. 2011) and relative change rate
(RCR) (Zhu et al. 2001), derived from the transition matrix,
were also calculated to depict the change rate for a certain land
cover type (Eqs. 2 and 3).

LCDDT ¼

X

i¼1

n

ΔLCij

X

i¼1

n

LCi

0

B
B
B
@

1

C
C
C
A

� 100% ð2Þ

where LCi represents the area of land cove class i in the initial
time of t, ΔLCij is the change area converted from class i to
other class j ( j =1, 2, 3, …, n ) at the end of time t +1.

RCR ¼ Kb−Kaj j � Ca

Ka � Cb−Caj j ð3Þ

where Ka and Kb are the area of a certain land cover class
between the initial and end time in a local region, and Ca and

Fig. 2 Flowchart for generating
land cover map
using the neural network with
eigenvectors method

Arab J Geosci



Cb are the corresponding area of such a class in the entire
study area.

Results

Land cover mapping and accuracy assessment

Based on the above classification scheme and algorithm, four
land cover maps with six types were generated for 1978, 1992,
2000, and 2010 (Fig. 3). It is obvious that both high- and low-
density urban development can be found in the south-central
portions of Beijing, while several rural land cover types in-
cluding agricultural croplands, forests and grasslands charac-
terize the surrounding landscapes. The four maps were the
basis for subsequent dynamic change analysis, so it was quite
necessary to present their classification accuracies. Confusion
matrix was employed to show the accuracy of land cover
classification by referring to the ground truth information
(Congalton 1991). When selecting the ground truth data, a
stratified sampling scheme was used to make sure that refer-
ence points or regions of interest (ROIs) could distribute
across the study area (Achard et al. 2002). The producer’s
and users’ accuracies were calculated for each type and the
overall accuracies were obtained for all the classes (Table 3).
Considering the overall accuracies, it could be observed
that the classification for 2000 had the highest accuracy,
they had the similar accuracies for 1978 and 1992, and

it had the worst accuracy for 2010. Furthermore, they also
showed different accuracy differences for six types among
four-year maps.

It was obvious that the spatial distribution of each type and
the change trends among different years could be visually
observed. Considering the spatial distribution, some conclu-
sions could be qualitatively drawn: (1) woodland, agriculture,
and urban land were the dominant types, and woodland
accounted for almost half of the study area; (2) woodland
could be foundmainly in the western, eastern and northeastern
regions; (3) almost all the agriculture distributed around the
urban areas; and (4) Beijing had been undergoing a process of
rapid urban sprawl during 1978–2010. Furthermore, the spe-
cific area of each type for the four periods were identified
(Table 4), according to the analysis of four land cover maps
(Fig. 3). Some conclusions could be quantitatively proven and
new conclusions could be drawn from Table 4. Woodland and
urban types had showed a fast-growing trend; on the contrary,
agriculture and barren land had a gradually decreasing trend
over the 30 years. Woodland recorded the largest increase
relative to the total area, from 40.15 % in 1978 to 54.55 %
in 2010, while agriculture had the largest decrease from
29.54 % in 1978 to 17.13 % in 2010. Concerning the grass-
land and water, they had no significant change trend. When
considering the change rate during 1978–2010, agriculture,
grassland, and barren land held the negative value to show a
decrease trend; on the contrary, woodland, water, and urban
land had the positive value to show an increasing trend.

Fig. 3 Land cover maps generated from Landsat time series imagery for 1978, 1992, 2000, and 2010
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Detection of areal change and transfer direction

Transition matrices were used to monitor both the amount and
direction of land cover changes corresponding to the periods
1978–1992, 1992–2000 and 2000–2010 (Table 5). The tran-
sitions among different types frequently occurred, but the
amount and direction of transfer in and transfer out were
extremely different for each type. Considering the change
rates among six types, the most dramatic change took place
to grassland, barren land, and agriculture, except the water,
during the three temporal intervals. Agriculture and barren land
showed a net outflow and woodland and urban type had a net
inflow. To show the general change intensity of all the types,
the comprehensive index of LCDD was used (Fig. 4). It could
be seen that the comprehensive change rate showed an increase
trend (1992–2010), and it was 38.10 % during 1978–2010.

During the period 1978–1992, agriculture held the largest
amount of transfer out (1,928.390 km2), barren land was in the
second place (1,301.433 km2), and water had the least amount
(25.132 km2). The descending order was agriculture, barren
land, urban area, woodland, grassland, and water in light of
the areal change. Furthermore, considering the transfer direc-
tion among six types, they showed different conditions.
Specifically, 1,188.433 km2 of the transferred-out agriculture
were flown to urban area. Similarly, 481.280 km2 of woodland
was mainly converted to barren land; 50.378 km2 of grassland
was primarily transferred to agriculture; and 1,188.494 km2 of

barren land was mainly converted to woodland. Considering
the amount and direction of transfer in, they differed from
transfer out for each land cover type. A total of 1,468.139 km2

of woodland were increased and derived mainly from barren
land. Urban area was in the second place and the increment
was 1,293.266 km2, which were mainly derived from agricul-
ture. They were woodland, urban, agriculture, barren land,
grass land and water in a descending order, in accordance with
the acreage gains.

During the period 1992–2000, agriculture was the primary
source of transfer out and 1,134.780 km2 were flown to urban
area (376.923 km2) and woodland (30.055 km2). The barren
land was in the second place and 1,075.578 km2 were mainly
converted to woodland (480.780 km2) and agriculture
(109.797 km2). According to the amount of transfer out, they
were agriculture, barren land, woodland, urban, grassland, and
water in a descending order. Conversely, woodland had the
largest gain and 1,555.228 km2 were increased mainly from
barren land (979.142 km2) and agriculture (392.665 km2). The
urban area was in the second place and 730.745 km2 were
added mainly from barren land (59.069 km2) and agriculture
(577.812 km2). According to the amount of transfer in, they
were woodland, urban, barren land, agriculture, water and
grassland in a descending order.

Similarly, agriculture and barren land were still the primary
source of transfer out during the period 2000–2010. A total of
1,294.541 km2 agriculture was primarily transferred to urban

Table 3 Summary of classification accuracies (in percent) for 1978, 1992, 2000, and 2010 based on the Landsat imagery

Land cover type 1978 1992 2000 2010

Producer’s Users’ Producer’s Users’ Producer’s Users’ Producer’s Users’

Agriculture 86.01 88.13 86.68 87.86 86.48 83.14 80.67 74.33

Woodland 85.58 81.11 87.86 83.67 85.18 84.82 85.77 83.37

Grassland 84.17 88.11 81.40 88.04 87.83 87.64 72.38 83.07

Water 87.64 87.74 88.85 88.67 83.20 85.53 86.87 88.52

Urban 88.48 88.37 83.88 88.42 81.72 88.58 81.61 82.86

Barren land 83.42 72.12 86.34 74.97 81.34 83.36 79.04 74.33

Overall accuracy 84.17 84.67 85.35 78.73

Table 4 Areal and ratio statistics for six-class classification of Beijing during 1978–2010

Year Agriculture (km2) Woodland (km2) Grassland (km2) Water (km2) Urban (km2) Barren land (km2)

1978 4,839.421 6,577.819 123.698 185.316 2,441.885 2,215.641

1992 4,042.992 7,364.763 225.316 370.598 2,617.536 1,762.574

2000 3,383.138 8,341.171 81.251 355.292 2,853.727 1,369.200

2010 2,807.080 8,936.965 50.225 257.573 3,404.734 927.202

Differencea −2,032.341 2,359.146 −73.473 72.257 962.849 −1,288.439

Change rate/% −42.00 35.87 −59.40 38.99 39.43 −58.15

a Denotes the areal difference of a certain type between the year 1978 and 2010
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area (418.002 km2) and woodland (216.357 km2). A total of
1,078.880 km2 barren land was primarily transferred to wood-
land (576.869 km2) and urban area (35.491 km2). The order of

transfer out was agriculture, barren land, woodland, water,
urban, and grassland, respectively. Considering the transfer
in of each type in 2010, woodland and urban area still obtained

Fig. 4 Comprehensive land
cover dynamic degree of the
study area during 1978–2010

Table 5 Land cover transition matrices for the six types in the three periods during 1978–2010 (in square kilometer)

1978–1992 Agriculture Woodland Grassland Water Urban Barren land 1992 Change rate/%

Agriculture 2,911.031 69.418 50.378 7.672 981.388 23.105 4,042.992 −16.46

Woodland 234.095 5,896.624 30.299 2.438 12.813 1,188.494 7,364.763 11.96

Grassland 66.538 85.084 3.548 0.332 27.856 41.958 225.316 82.15

Water 127.086 12.520 4.885 160.185 49.718 16.205 370.598 99.98

Urban 1,188.433 32.894 26.578 13.689 1,324.270 31.672 2,617.536 7.19

Barren land 312.238 481.280 8.009 1.001 45.840 914.207 1,762.574 −20.45

1978 4,839.421 6,577.819 123.698 185.316 2,441.885 2,215.641 16,383.779

1992–2000 Agriculture Woodland Grassland Water Urban Barren land 2000 Change rate/%

Agriculture 2,908.211 30.055 21.889 27.619 376.923 18.441 3,383.138 −16.32

Woodland 392.665 6,785.943 114.179 15.983 53.259 979.142 8,341.171 13.26

Grassland 15.884 31.277 11.121 1.882 5.742 15.345 81.251 −63.94

Water 38.623 10.234 2.024 278.104 22.726 3.582 355.292 −4.13

Urban 577.812 26.474 28.483 38.907 2,122.982 59.069 2,853.727 9.02

Barren land 109.797 480.780 47.619 8.104 35.904 686.996 1,369.200 −22.32

1992 4,042.992 7,364.763 225.316 370.598 2,617.536 1,762.574 16,383.779

2000–2010 Agriculture Woodland Grassland Water Urban Barren land 2010 Change rate/%

Agriculture 2,088.597 216.357 7.008 38.650 418.002 38.466 2,807.080 −17.03

Woodland 204.441 7,407.481 60.628 82.006 186.223 996.187 8,936.965 7.14

Grassland 14.160 7.433 1.982 2.435 6.423 17.792 50.225 −38.18

Water 24.740 15.437 1.177 174.641 30.556 11.022 257.573 −27.50

Urban 1,033.892 123.392 4.283 50.721 2,177.033 15.413 3,404.734 19.31

Barren land 17.308 576.869 6.173 6.839 35.491 290.319 927.202 −32.28

2000 3,383.138 8,341.171 81.251 355.292 2,853.727 1,369.200 16,383.779
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a lot of transfer in from other types. Specifically, 1,529.484 km2

woodland was mainly added from 996.187 km2 barren land
and 204.441 km2 agriculture, and 1,227.702 km2 urban area
was increased mainly from 1,033.892 km2 agriculture and
123.392 km2woodland. Concerned with the amount of transfer
in, they were woodland, urban, agriculture, barren land, water,
and grassland in a descending order.

Spatial patterns of changed types

After analyzing the changes in amount and transfer direction
depending on transition matrices (Table 5), it was more im-
portant to investigate the spatial patterns for changed types
such as agriculture, urban, woodland, etc. Agriculture was
taken as the example to show the spatial characteristics
interacting with other types. As shown in Fig. 5, agriculture
was primarily converted to urban area and woodland.
Spatially, the urban areas converted from agriculture mainly
distributed around the central urban areas, including Haidian,
Chaoyang, Fengtai, Changping, Daxing, and Shunyi, while
the woodland converted from agriculture mainly distributed in

the mountain areas including Yanqing, Miyun, and Pinggu. To
compare the RCR for a given type among different hot re-
gions, agriculture was taken as a study case and Chaoyang and
Yanqing were used as the study area to comparatively analyze
their RCRs (Eq. 3). The result showed that it was 2.2 for
Chaoyang and it was 26.1 for Yanqing between 1978 and
2010, which indicated that the RCR of agriculture was larger
in Yanqing than in Chaoyang.

Discussion

Analysis of land cover identification and accuracy

Land cover shows a specific landscape with different types for
a specific study area, whose amount and spatial distribution
can meet a wide variety of spatial needs for human beings. It
has been considered as the essential background information
in many applications, such as land degradation, rural sustain-
ability, and landscape fragmentation (Mundia and Aniya
2006; Kamusoko et al. 2009; Dewan et al. 2012). Different

Fig. 5 Conversion of agriculture
to other land cover types during
the period 1978–2010
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methods for identifying land cover have experienced signifi-
cant changes ranging from intensive field sampling with plot
inventories to extensive analysis using remotely sensed data
(Rogan and Chen 2004). However, land cover does not al-
ways keep an unchanging status and can also be obviously
changed due to human and natural activities. Actually, there
are two primary objectives regarding land cover in an area.
One is to identify the land cover types accurately, and the other
is to monitor their dynamic changes at a time span. With the
development of modern socioeconomic activities, the
updating frequency of land cover dynamics has shown a rapid
trend. Consequently, identification of land cover information,
especially assessing the dynamic changes in fast-growing
metropolis (e.g., Beijing, Shanghai, Tianjin, etc.), have been
considered as an important parameter for sustainable planning
in the context of agriculture, urban development, and nature
conservation (Huth et al. 2012). In previous studies, they have
been considered as major concerns on how to accurately
identify land cover, do dynamic assessment and find out
driving forces causing the changes.

Although satellite data with various spatial, temporal, spec-
tral, and radiometric resolutions and different swath widths
have been continuously developed, land cover mapping
should be considered in relation to requirements, data sources
and analysis methodologies (Cihlar 2000; Braimoh and
Onishi 2007). The primary goal of this study is to characterize
the spatiotemporal dynamics of land cover in Beijing. It is
quite important to select appropriate remotely sensed data.
Concerning the requirements of spatial and temporal resolu-
tions, Landsat time series imagery was adopted in our study.
Nevertheless, there are many difficulties confronting the iden-
tification of land cover, due to the complexities and heteroge-
neities regarding land cover types in metropolis and the reso-
lution constraints on remotely sensed imagery. In previous
studies of land cover based on Landsat imagery, spectral infor-
mation was primarily used (Townshend 1984). Unfortunately,
it is inevitable that the phenomenon “the same object with
different spectra” and “the same spectrum corresponding to
different objects” always occurs among different land cover
types. The errors of omission and commission are usually
greater, so the classification accuracies are greatly affected.
Considering the above disadvantages, multi-seasonal imagery
was essential for discriminating confused land cover types
(e.g., agriculture and urban area, agriculture, and woodland).
Additionally, some new methods were proposed by integrating
more ancillary data, such as spatial structural information,
topographical parameters and vegetation indices which could
greatly reduce spectral confusion and increase the accuracy of
land cover classification compared to only spectral classifica-
tion (Sah et al. 2005; AlFugara et al. 2009). In our study, two
things were done to make sure that the classification maps
could be more accurate. One was to optimally select the
Landsat imagery prior to performing classification. The other

was to adopt the efficient method of neural network with
eigenvectors.

Specifically, spring and summer images were primarily
selected in accordance with the specific features of defined
land cover types. After selecting the images, the neural net-
work classification method was used to identify different
types by inputting spectral bands, texture variables, DEM,
slope, aspect, normalized difference vegetation index. The
overall classification accuracies were 84.17, 84.67, 85.35,
and 78.73 for 1978, 1992, 2000, and 2010, respectively
(Table 3). It could be seen that it had the highest accuracy
for 2000; they were almost the same for 1978 and 1992; and it
was lowest for 2010. The differences could be ascribed to the
following two aspects: on the one hand, the image quality has
been improved from Landsat MSS, TM to etM+, on the other
hand, the land cover scenarios have been changing and be-
coming more fragmented. With the improvement of Landsat
imagery from MSS to etM+, the spatial resolutions and avail-
able spectral bands were also increased, which greatly im-
proved the spectral separability and heterogeneity among
different types. Furthermore, the increasing landscape frag-
mentation disrupted the land cover integrity, especially for the
agriculture and urban area, due to aggravating human-based
socioeconomic activities, which made the spatial distribution
of different types more discrete. In addition, the number of
collected ground truth points or ROIs for accuracy assessment
was also an important factor to affect final accuracy (Congalton
1991). In our study, the availability of ground truth reference
data was extremely different in four periods, the amount and
positions of reference data were also different. Consequently,
there was more likely a lack of ground truth data for some types
and excessive data for other types.

Dynamic assessment

Urban areas, with the highest population density and aggra-
vating socioeconomic activities, have usually been paid more
attention. As the hot spot and sensitive issues, rapid urbaniza-
tion and urban sprawl have significant impact on conditions of
urban ecosystems. It is highly desirable to improve the ability
to monitor urban land cover/land use changes. Remote sens-
ing has proven to be a more cost-effective tool in identifying
urban land cover for large regions, small site assessment and
analysis (Moody and Woodcock 1995). In previous studies,
Landsat data were utilized in most urban land cover/land use
change monitoring, due to the uniqueness of the dataset as the
only long-term digital archive with a medium spatial resolu-
tion and relatively consistent spectral and radiometric resolu-
tion (Yang et al. 2003). Subsequently, the spatial analysis
functions are usually delivered to geographic information
system (GIS). Therefore, the combination of satellite remotely
sensed data and GIS for land cover, land use and their changes
is a key to many diverse applications such as environment,
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forestry, hydrology, agriculture, and geology (Mengistu and
Salami 2007; Dewan and Yamaguchi 2009b; Zhao et al.
2012). Jat et al. (2008) monitored the urban sprawl of the
Ajmer city (situated in Rajasthan State of India), over a period
of 25 years (1977–2002), using the statistical classification
approaches of the remotely sensed images obtained from
various sensors viz. Landsat MSS, TM, ETM+ and IRS
LISS-III, and the spatial analysis techniques of GIS. Dewan
and Yamaguchi (2009a) evaluated the land use/cover changes
and urban expansion in Greater Dhaka, Bangladesh, between
1975 and 2003 using a supervised classification algorithm and
the post-classification change detection technique in GIS. In
our study, two distinguishing features can be found compared
to other related studies: one is the acreage of the study area
(the entire BeijingMetropolis) is large, the other is the efficient
classification method (the BPNN with eigenvector) is used.

Landsat MSS, TM, and etM+ images have been widely
utilized in land cover, especially in the time series analysis,
since its successful launch in 1972 (Yang and Lo 2002). In our
study, four-date Landsat satellite images for 1978, 1992, 2000
and 2010 were collected and processed for generating land
cover maps during the period 1978–2010. Subsequently, the
dynamic changes in amount, transfer direction and spatial
pattern for each type were identified. Specifically, the acreage
of each type was calculated by the number of pixels and the
spatial resolution of Landsat images. Then, the transfer direc-
tions at three time intervals were assessed by corresponding
land cover transition matrices which have often been consid-
ered as an effective tool in quantitatively estimating the
change within a specific time span (Petit et al. 2001). Based
on the transfer matrix of land cover, two aspects can be
exposed: one is to reflect the organization structures of differ-
ent types at the beginning and end of the study period, the
other is to demonstrate the transfer direction among different
types. Although a certain land cover type can be theoretically
converted to any other types or increased from other types,
some transitions cannot usually occur in practical applica-
tions. For example, it is normal that agriculture is converted
to urban area, but it is always impossible in inverse case.
There are few areas where certain categories such as water
also transformed to woodland concerning this study. Two
reasons can be used to interpret the phenomenon: one is the
influence of misclassification because of mixed pixels on
different spatial resolution images; the other is the seasonal
differences of Landsat images in different years. In addition, it
is also difficult to acquire the satellite images or photographs
for the study site at constant time intervals. When comparing
the transition matrices for different observation periods, they
must be normalized at the same observation interval (Takada
et al. 2010).

After analyzing the changes in the amount and transfer
direction, it is quite necessary to find out the hot regions where
the intensities of land cover change are highest. The

comprehensive LCDD and RCR were considered as the two
appropriate indices to describe the changes in spatial patterns
(Yan et al. 2002), and they were used to depict the change rate
for a certain land cover type in our study. It is obvious that the
combination of remote sensing and GIS has provided an
inexpensive and effective approach for monitoring land cover
and its changes. However, for governmental decision-makers,
it is just the major concern on how to find out the driving
factors and providing a solution for sustainable exploration
and protection of precious land resources.

Driving forces analysis

Driving forces analysis is a way of understanding and ac-
counting for land cover changes potentially caused by differ-
ent factors such as regional climate change, physical and
ecological constraints, socioeconomic and political influ-
ences, etc. (Serra et al. 2008). Environmental factors, such as
slope, aspect, elevation, temperature, precipitation, etc., usu-
ally determine the vegetation growth and agricultural devel-
opment in the fragile ecosystem (Wang et al. 2006). However,
in comparison with the constraints of natural conditions, de-
mographic and economic development is the highly basic
driving factors in fast-growing metropolitan areas (Lin and
Ho, 2003). Typical limiting factors include the rapid popula-
tion growth, the fast-growing urban and suburban economies,
the higher urbanization level, changing institutional policies,
etc. Those factors have substantially exerted a significant
influence on land cover scenarios in Beijing, especially since
Chinese reform and opening up in 1978.

(1) Economic development

As a matter of fact, the urban sprawl and land cover
changes are substantially driven by the urgent requirements
of social and economic development (Walker 2001). During
the period from 1978 to 2010, Beijing has experienced a
remarkable period of rapid economic growth spanning more
than 30 years (Fig. 6). In 1978, the local gross domestic
product (GDP) was just 108.8 (100 billion) Yuan, but it had
increased to 500.8, 3,161.7, and 14,113.6 (100 billion) Yuan
in 1990, 2000, and 2010, respectively. Similarly, the GDP per
capita also showed a rapid growth trend, and it was 1,257,
4,635, 24,127, and 75,943 Yuan in 1978, 1990, 2000, and
2010, respectively. In more than 30 years, the GDP in Beijing
increased by 12,872 % and the GDP per capita increased by
5,942 %. It was inevitable that the phenomena of population
growth, urban sprawl, reduction of land resources, etc. would
occur along with the improvement in economic development
(Meyer and Turner II 1992).

(2) Growth of population and construction areas

Since the 1980s, the urban and floating population have
experienced a continuous growth, so the total population
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showed a sharp increase from 871.5 (10,000) in 1978 to
1,961.9 (10,000) in 2010 (Fig. 7a). According to the popula-
tion statistics from Beijing Statistical Information Net (http://
www.bjstats.gov.cn), there were totally 19.612 million
registered permanent residents in 2010 from the sixth
national population census, Beijing. A total of 6.043 million
(44.5 %) was increased in 10 years and the average increase
was 0.604 million (about 3.8 %) per year compared to the fifth
population census in 2000. There are two reasons for such a
population growth during the study period. One is that the
birth rate and the rate of natural increase per 1,000 population
have always kept relatively high values, but the death rate has
shown a gradual downward trend (Fig. 7b). The other is that
large floating population from 21.8 (10,000) in 1978 to 704.7
(10,000) in 2010, continually enter this metropolis, due to the
rapid urbanization and accelerated development in Beijing.
Consequently, more and more houses and traffic facilities will
be required along with the population growth. According to

the Beijing Statistical Yearbook 2011, the construction areas,
the mileages of roads and the number of bridges, have
significantly increased from 1978 to 2010. Specifically, the
total housing construction area was just 956.3 (10,000 m2) in
1978, but it had reached 15,572.1 (10,000m2) in 2010 (Fig. 8a).
About half of the housing construction areas were used for
residential construction. Similarly, the mileage of the roads
and streets and the number of bridges have also kept an
increasing trend in Beijing during the study period. The total
mileage of roads was just 6,562 km in 1978, but it had reached
21,114 km in 2010; the number of bridges was just 351 in 1978,
but it was 1,855 in 2010 (Fig. 8b).

(3) Institutional policies

In addition to rapid economic development and population
growth, the land cover scenarios are also greatly altered by
institutional policies from local or national governments. For
example, the Program for Conversion of Cropland to Forests

Fig. 6 Economic development in
Beijing during the period
1978–2010

Fig. 7 a Changes of population in Beijing during 1978–2010; b changes of the rates of birth, death and natural increase in Beijing during 1978–2010
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was implemented in Beijing in 2000. To reduce or control
water and soil loss, barren land and sloping farmland were
changed to woodland, especially in mountain areas such as
Pinggu District, Huairou District, Yanqing County. It was
reported that a total of about 300 km2 of farmland have been
changed to woodland during 2000–2004. For another exam-
ple, Beijing’s overall planning schemes were specified in
different developmental stages. During the period 1991–
2000, the strategy was proposed that the metropolitan devel-
opment gradually transferred from urban to suburban areas,
according to the requirements of the socioeconomic develop-
ment and the amount of urban and floating population. In the
updated overall planning schemes (2004–2020), some new
plans are also made to determine the spatial patterns in urban
landscape to a great degree.

Conclusions

Beijing, a fast-growing and dynamically changing metropolis,
was selected as the study area and the land cover and its
change were qualitatively and quantitatively characterized
by combining remote sensing and GIS spatial analysis tech-
niques during the period 1978–2010. The results showed that
Beijing witnessed a dramatic change in land cover over the
study period. It experienced a heavy loss in agriculture, grass-
land and barren land, but had a gain in woodland and urban
area. Agriculture decreased from 4,839.421 km2 in 1978 to
2,807.080 km2 in 2010, on the contrary, urban area increased
from 2,441.885 to 3,404.734 km2 within the period.
Concerned with the transfer direction, agriculture was primar-
ily flown to urban area and woodland. Barren land was mainly
converted to woodland and agriculture. Spatially, the urban
area converted from agriculture mainly distributed around the
central urban areas including Haidian, Chaoyang, Fengtai,
Changping, Daxing, and Shunyi, while the woodland

converted from agriculture mainly distributed in the mountain
areas including Yanqing, Miyun, and Pinggu. Furthermore,
the relationship between land cover dynamics and driving
forces was examined. In comparison with environmental con-
straints, socioeconomic and sociopolitical aspects were just
the leading factors to change its land cover in fast-growing
Beijing.

To find out the causes of land cover in Beijing, three types
of driving factors were primarily discussed including the
economic development, growth of population and construc-
tion areas, and institutional policies. It was shown that the
economy, population, and construction areas had experienced
a sharp increase. In more than 30 years, the GDP increased by
12872 % and the GDP per capita increased by 5942 %; the
total population increased from 871.5 (10,000) in 1978 to
1,961.9 (10,000) in 2010; the total housing construction area
increased from 956.3 (10,000 m2) in 1978 to 15,572.1
(10,000 m2) in 2010; the total mileage of roads increased from
6,562 km in 1978 to 21,114 km in 2010; and the number of
bridges increased from 351 in 1978 to 1,855 in 2010.
Additionally, institutional policies implemented by local or
national governments were also found to affect the spatial
patterns in land cover landscape. Based on the above analysis,
it can be seen that the combination of remote sensing and GIS
techniques is a useful monitoring system to identify spatially
land cover types and assess the changes over long time spans
in densely populated urban areas. Additionally, the analysis
between land cover and some its causative factors are also
useful for managing and exploring precious land resources by
specifying rational urban planning policies.
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