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Abstract—Continuous monitoring leaf area index (LAI) of field
crops in a growing season has a great challenge. The development
of remote sensing technology provides a good tool for timely
mapping LAI regionally. In this study, hyperspectral reflectance
data (405–835 nm) obtained from an airborne hyperspectral
imager (Pushbroom Hyperspectral Imager) were used to model
LAI of winter wheat canopy in the 2002 crop growing season.
LAI was modeled based on its semi-empirical relationships with
six vegetation indices (VIs), including ratio vegetation index
(RVI), modified simple ratio index (MSR), normalized difference
vegetation index (NDVI), a newly proposed index NDVI-like
(which resembles NDVI), modified triangular vegetation index
(MTVI2), and modified soil adjusted vegetation index (MSAVI).
To assess the performance of these VIs, root mean square errors
(RMSEs) and determination coefficient (R2) between estimated
LAI and measured LAI were reported. Our result showed that
NDVI-like was the most accurate predictor of LAI. The inclusion
of a green band in MTVI2 trended to give a rise to a much
quicker saturation with increase of LAI (e.g., over 3.5). MSAVI
and MTVI2 showed comparable but lower potential than NDVI-
like in estimating LAI. RVI and MSR demonstrated their lowest
prediction accuracy, implying that they are more likely to be
affected by environmental conditions such as atmosphere and
cloud, thus cannot properly reflect the properties of winter wheat
canopy. Our results support the use of VIs for a quick assessment
of seasonal variations in winter wheat LAI. Among the indices
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we tested in this study, the newly developed NDVI-like model
created the most accurate and reliable results.

Index Terms—Hyperspectral remote sensing, leaf area index
(LAI), vegetation index (VI), winter wheat.

I. INTRODUCTION

L EAF AREA INDEX (LAI) describes a potential sur-
face area available for leaf gas exchange between the

atmosphere and the terrestrial biosphere, and it determines
the transpiration, the interception and absorption rates by
vegetation in solar radiation [1]. Therefore, it is a crucial input
variable in numerous land surface models and is one of the
most important agronomic indices to monitor crop condition
and estimate yield. Traditional determination of LAI involves
direct field measurement, which is time-consuming and labor-
intensive, making it hard to be applied in a large area and long-
term monitoring. In comparison, remote sensing technology
provides a good and reliable approach for timely evaluation
of LAI at a large scale [2].

Many physical and statistical models have been developed
to estimate LAI using optical remote sensing data. Using a
physical model, a three-dimensional radiative transfer model
has been inverted to retrieve global LAI products of Moderate-
Resolution Imaging Spectroradiometer (MODIS) data using a
lookup table [3]. Neural network is also developed to generate
canopy biophysical products from top-of-canopy reflectance
measurements [4], [5]. Although these techniques have been
widely used to estimate LAI at large scales, studies also
show that the accuracy of these models may not meet specific
application requirements in certain cases [6].

Statistical models generally use regression methods between
spectral variables and measured LAI [7]. The principal com-
ponent analysis is one of such approaches, in which LAI
is estimated from a set of features transformed from the
original radiometric measurements [8]. Although this approach
incorporates information of all spectral bands, it is not a
straightforward interpretation to the physical meaning of the
extracted features. In contrast, spectral vegetation indices (VIs)
combining reflectance from a few spectral bands and being
relatively simple have been related with various biophys-
ical descriptors and used for estimating LAI of different
crops [9].
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TABLE I
DESCRIPTIONS OF EXPERIMENTAL DESIGN OF WINTER WHEAT

N stands for nitrogen, W stands for water, and JD 8 stands for Jingdong 8.

Broadband indices are heavily affected by soil background
at a low vegetation cover. The advent of airborne hyperspectral
image has made it possible to construct more refined VIs
through the use of distinct narrow bands [10]. VIs have been
applied in cases of different crops [11]–[14]. However, most
VIs are species specific and are not robust when used across
different species [15]. The main objective of this study is to
compare the potential of different VIs derived from airborne
hyperspectral reflectance in predicting LAI of winter wheat
over growing seasons. Six types of VIs were used in this
analysis: 1) ratio vegetation index (RVI) [16], 2) modified
simple ratio index (MSR) [16], 3) normalized difference
vegetation index (NDVI) [17], 4) NDVI-like [18], 5) modified
triangular vegetation index (MTVI2) [9], and 6) modified
soil adjusted vegetation index (MSAVI) [19]. RVI, MSR, and
NDVI are normal and basic indices which are usually used as
a baseline of VIs [12]. NDVI-like is a derivative of NDVI and
is modified on the basis of NDVI. MTVI2 and MSAVI were
chosen because they were proved sensitive to wheat [9], [20].

II. MATERIALS

A. Experimental Design

The experiment was conducted in the 2002 growing season
at National Experimental Station for Precision Agriculture
(40◦10′N, 116◦27′E), Beijing, China [21]. Forty-eight fields
each in a size of 32.4 m × 30 m were selected for LAI
sampling, and they were numbered 1 through 48 (the location
of each plot can be seen in Table I). Three types of winter
wheat (W 9507, W 9428, and W Jingdong 8) were planted
in these fields. We also designed varieties of water irrigation
and nitrogen fertilization in this experiment. There were over-
all four nitrogen treatments (0, 150, 300, and 450 kg ha−1)
and four water treatments (0, 225, 450, and 675m3 ha−1).
Thereby, our test encompassed a combination of species,
nitrogen, and water regimes (Table I).

B. Data Collection

1) Image Acquisition and Preprocessing: Pushbroom Hy-
perspectral Imager (PHI) is an array pushing imaging spec-
trometer designed by Shanghai Institute of Technical Physics,
the Chinese Academy of Sciences, with a spectral resolution
less than 5 nm, spanning wavelengths from 405 to 835 nm

with 126 bands. During the 2002 growing season, three flights
were taken on April 18, May 17, and May 31, respectively.
The flying heights varied between 1000 and 1200 m and the
fight path consisted of seven strips, covering the whole station
(i.e., National Experimental Station for Precision Agriculture).
The spatial resolution of corrected PHI images was 1 m. Apart
from a regular atmospheric correction, with a normally used
filtering method: Savitzky-Golay, the three flights of PHI im-
ages were denoised to further improve the image quality [22].

2) LAI Data: In each field, LAIs were sampled and
recorded in three times on April 18, May 17, and May 31,
respectively (so, a total of 48× 3 = 144). LAI sampling was
performed within a 1× 1m2 plot in a field (i.e., in three
different locations for each field). Wheat leaf samples were
collected in each plot, and their location was recorded using a
GPS equipment (Trimble DSM 232 DGPS) with an accuracy
of 0.2 m. The GPS measurements could help locate an LAI
sampling plot on a PHI image. The leaf areas of winter
wheat were measured in a laboratory to determine LAI. After
eliminating four invalid samples on May 31 because of their
values equal zero, the final dataset contained 140 samples.
From LAI sampling plots on the PHI images acquired on
the three different dates, corresponding image spectra were
extracted in order to conduct modeling analyses with measured
LAIs below.

III. METHODS

A. Vegetation Indices

NDVI highlights the striking contrast between near-infrared
(NIR) and red band reflectance. Although some studies point
out that NDVI is not the best approach for LAI estimation
because the inherent saturation drawback hinders effective
estimation of LAI, it has been widely accepted by both
research and social application communities as a benchmark
for comparing alternative inversion algorithms [9]. RVI can
compress the multiplicative effects of atmosphere and has a
close linear relationship with biological parameters of plants
[12]. MSR aims at alleviating the saturation drawback of
NDVI. Broge and Leblanc [23] found that the MSAVI was
the best LAI estimator for its lowest sensitivity to soil ef-
fects on canopy spectrum and soil spectral properties. One
particular limitation of MSAVI was its performance as an
estimator of LAI in dense canopies. Modified MTVI2 was



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: LAI ESTIMATION USING VIs DERIVED FROM AIRBORNE HYPERSPECTRAL IMAGES 3

TABLE II
DEFINITIONS AND FORMULAS OF VIS INVESTIGATED IN THIS STUDY

first developed by Haboudane et al. [16]. It combines hy-
perspectral reflectance in NIR, red and green wavelengths to
reduce perturbation from leaf chlorophyll content variation for
crop green LAI estimation, and incorporates an adjustment
mechanism to reduce background soil effect. In fact, MTVI2
was especially developed for hyperspectral data. Liu et al. [9]
have proved that MTVI2 was quite promising in crop LAI
estimation and could be used in a simple regression model
to generate a baseline green LAI product for seasonal crop
growth monitoring. Table II lists all six VIs including their
definitions and references.

Apart from those VIs aforementioned, many researchers are
interested in developing many other VIs with hyperspectral
data [10]. For example, Darvishzadeh et al. [18] developed
a new index called NDVI-like based on red and NIR bands,
and showed strong ability to estimate LAI of grassland. To
verify those indices, it is necessary to assess the performance
of these two-band indices in estimating winter wheat LAI
by comparing them with traditional indices. Development of
ground hyperspectral remote sensing and imaging spectrome-
try has opened new channels for monitoring plant growth and
estimating biophysical properties of vegetation. A new group
of VIs based on the shape and relative position of the spectral
reflectance curve has been proposed, among which NDVI-like
is an inspiring one.

Regression models based on VIs are widely used for
estimating biophysical parameters due to high computation
efficiency and universality. In order to evaluate hyperspectral
VIs for estimating LAI, in this study, a regression analysis
was conducted between LAI and various VIs, including MSR,
RVI, NDVI, MSAVI, and MTVI2, and a newly proposed index
NDVI-like. The narrow band NDVI-like index was systemat-
ically calculated for all possible 126 × 126 = 15 876 wave-
length combinations between 405 and 835 nm. We calculated

all possible combinations of 126 hyperspectral bands using
MATLAB. Correlation analysis was performed between 140
LAI samples and their corresponding NDVI-like combinations.

B. Validation of Statistical Techniques

To evaluate the performance of the statistical models, a
k-fold cross-validation procedure was used, in which the entire
dataset (i.e., 140 samples) acquired in 2002 was divided into k
mutually exclusive groups following a k-fold cross-validation
partitioning design. In our case, the data was randomly and
evenly split into four (k = 4) sets, and each quarter was
estimated by the remaining samples. In other words, for
estimating LAI with one type of VI, we developed four
individual models in rotating one quarter as validation data.
In each model, 105 samples were used to build the calibration
model, and the remaining 35 samples were used to verify the
calibration model. All six VIs tested used the same k-fold
partitions.

This type of validation was necessary because it reduced
the dependence on a single random partition into calibration
and validation datasets. This also guaranteed that all samples
were used for both training and validation with each sample
used for validation exactly once. root mean square errors
(RMSEs) and determination coefficient (R2) were selected as
the accuracy indicators of the statistical models in predicting
unknown samples [24].

IV. RESULTS AND DISCUSSION

A. Calibration and Validation of Models

Per each of the six VIs, we developed four individual
models. Since all tested VIs used the same k-fold partitions,
the results of different indices were comparable. In order
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Fig. 1. Calibration of models in four groups: (a) Group 1; (b) Group 2; (c) Group 3; and (d) Group 4.

to facilitate a comparison of these indices, we divided the
calibration models into four groups, each group with the same
observation dataset. The calibration models are presented in
Fig. 1. From this figure, among the tested VIs, NDVI-like
exhibited the best R2, followed by NDVI and then others.
Judged by the fit lines, the RVI and MSR calibration models
were of all logarithm models, meanwhile the other VIs were
exponential models, except for one linear model of NDVI-like

in Group 3. Among these models, scattering points in RVI and
MSR models exhibited a higher scattered degree along the best
fit line than other VIs, especially when LAI value was greater
than 3. In Groups 1, 2, and 3, there was one point in each RVI
and MSR model that far deviated from the fit line, suggesting
the limitation of ratio index in LAI prediction.

The saturation effect was studied under a visual comparison.
Fig. 1 shows that the saturation is not only a constraint of
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Fig. 1. (Continued.)

NDVI method, MTVI2 and MSAVI models also have this type
of problem, especially in Groups 1, 2, and 4. The NDVI-like
model was superior to NDVI model in every group and created
the highest R2 (0.80) at band 77 (700 nm) and band 83 (724
nm), supporting the study by Darvishzadeh et al. [18].

Table III presents the determination coefficient (R2) of each
calibration model. In each column for each type of VI, R2

varies from Group 1 through Group 4. RVI models created a
widest range of R2variation (from 0.6149 to 0.7406), second
by MSR (from 0.6165 to 0.7200), then MTVI2 (from 0.6620

to 0.7489), and NDVI (from 0.7023 to 0.7778), MSAVI (from
0.6885 to 0.7596), and NDVI-like (from 0.7615 to 0.7989). We
can conclude that NDVI-like is the most robust type of VI. In
each row for each group, NDVI-like showed relatively higher
R2 value than other VIs, therefore it was the most accurate VI.

B. Evaluation of VIs

LAI predicted by developed models were compared to
measured LAI values using six types of VIs. For each VI,
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TABLE III
DETERMINATION COEFFICIENT (R2) OF EACH CALIBRATION MODEL

Fig. 2. Relationship between measured LAI and estimated LAI using six types of VIs: (a) RVI; (b) MSR; (c) NDVI; (d) NDVI-like; (e) MTVI2; and (f) MSAVI.

predicted samples in Group 1 through Group 4 were validated
together (35 predicted samples in each group, and 140 in total).
The confidence of the relationship was assessed by the RMSE
and R2 values (Fig. 2).

Our results evidently showed that NDVI-like well made
LAI estimates. When the measured LAI was greater than
a threshold (about 3.5–4), all estimated LAI values were
lower than the ground LAI values, except some using the
NDVI-like model. When measured LAI was greater than
3.5, the estimated LAI values using the NDVI-like model
were slightly higher than measured LAI values, suggesting
the powerful prediction ability of the NDVI-like index. In
addition, among the six VIs in Fig. 2, NDVI-like samples
best converged to the 1:1 line. The R2 for all VIs var-
ied between 0.6308 and 0.7334, and meanwhile the RMSE
varied between 0.5897 and 0.6699. The best index using

all samples was NDVI-like (R2 = 0.7334, RMSE = 0.5897),
followed by NDVI (R2 = 0.6976, RMSE = 0.6078), then
MSAVI (R2 = 0.6878, RMSE = 0.62), and MTVI2 (R2 =
0.6758, RMSE = 0.6347). RVI and MSR demonstrated the
lowest prediction accuracy, implying that the construction of
these indices did not reflect leaf optical properties and canopy
structure properly.

Based on the LAI estimate results addressed above, it is
clear that the NDVI-like has demonstrated its potential to
estimating winter wheat LAI. First, NDVI-like has already
clearly showed its performance from our research results. In
addition, in this study, NDVI-like was based on red (700 nm)
and red edge (724 nm) bands. Red edge optical parameters
are relatively insensitive to environment changes such as soil
cover percentage, atmospheric effects, canopy structure, and
solar zenith angle [25], so it is useful for LAI estimation.
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Fig. 3. Statistical distribution of the difference between the estimated LAI and measured LAI using the six VIs.

Furthermore, Fig. 3 shows the distribution of the difference
between the measured LAI and estimated LAI values for
all the validation samples in all models of the six VIs (35
predicted samples in each group, and 140 in total). We defined
“error” here as a value of estimated LAI minus measured LAI.
RVI and NDVI-like errors best submit a normal distribution,
and NDVI-like error figure is more clustered around zero,
implying a higher accuracy. It is apparent that NDVI-like is
the most accurate index for the LAI estimation. MSAVI did
not create higher R2 than NDVI-like and NDVI. This might
be because soil background was not very complex, i.e., dry,
bright, and similar soil background among the 140 LAI
measurement plots [10]. In terms of MTVI2, the agreement
between the estimated and the measured LAI was relatively
poor when measured LAI was greater than 3. This was not
consistent with the work done by Haboudane et al. [16], which
concluded that MTVI2 was sensitive to high LAI. However,
the result was consistent with the conclusion made by Liu
et al. [9], in which MTVI2’s ability to estimate crop LAI
was weaker for wheat than for other species. The low R2

values of RVI and MSR suggested that these two indices
were easy to be affected by environmental conditions such as

atmosphere and cloud, even though the soil background was
relatively simple. Consequently they could not properly reflect
the properties of winter wheat canopy. NDVI and NDVI-like
demonstrated a stable ability in winter wheat LAI estimation,
especially NDVI-like, based on red and NIR or red-edge
bands. These bands are related to plant leaf water content
that has a close correlation with canopy biomass and LAI and
an indirect correlation to the absorption features of protein,
nitrogen, lignin, cellulose, and starch concentrations [10]. The
two bands selected to calculate NDVI-like maximized the
correlation between LAI and NDVI-like, thus best captured
the spectral characteristics of winter wheat canopy and created
the highest estimation accuracy.

V. CONCLUSION

The results of the study demonstrated that winter wheat LAI
could be estimated through the inversion of vegetation index
models with a satisfactory accuracy. Strong relationships were
found between VIs and LAI based on reflectance in the red,
NIR, red-edge, and green band. Based on red and NIR or
red-edge bands, NDVI and NDVI-like provided better results
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than RVI and MSR. MTVI2 enhanced the performance by
including green band, while it was less satisfactory than NDVI
and NDVI-like, especially when LAI values were greater
than 3.5.

Among the six indices tested in this study, the newly
developed index NDVI-like was found to be most closely
related with LAI and thus exhibited the highest sensitivity to
winter wheat LAI than other five widely used indices. This
was consistent with the study of Darvishzadeh et al. [18].
It has a potential to be used in a simple regression model
to generate baseline LAI of crops, and therefore it can be
useful for seasonal growth monitoring of winter wheat. In this
experiment, the results also indicated that other indices trended
to saturate at higher LAI values (e.g., greater than 3.5).
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