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As the progressive effects of global warming, the yield loss caused by diseases and pests are
increasing in winter wheat. It is necessary to distinguish different diseases for guiding variable rate
spraying in wheat. Nevertheless, it is very difficult to quantitatively identify different diseases and
fertilizer-water stress by specific sensitive bands selected from multi spectral data over a large area.
Conversely, hyper spectral data contain more information, and provide the potential for quantita-
tive identification of different stresses. This study focused on identification and distinction of yellow
rust, powdery mildew and fertilizer-water stress by canopy spectral reflectance. Fifteen commonly
used vegetation indices were selected, and independent t-test was done to get sensitivity index for
each stress. Finally, a combination index was optimally selected to distinguish the three stresses.
The results showed that the integrative index (NDVI-PhRI) combining normalized difference vege-
tation index (NDVI) and physiological reflectance index (PhRI) could be used to identify powdery
mildew and yellow rust (PM-YR). A 2-dimensional spatial coordinate was established based on the
NDVI and PhRI derived from hyper spectral data, then the different stress data were displayed
in the spatial coordinate and the classification boundary could be used to identify the powdery
mildew and yellow rust stress. Similarly, yellow rust and fertilizer-water stress (YR-n0w0) can be
distinguished by the combination index (MSR-PhRI) derived from modified simple ratio (MSR) and
physiological reflectance index (PhRI); and the combination index (NRI-RVSI) derived from nitrogen
reflectance index (NRI) and red-edge vegetation stress index (RVSI) was accurate to identify pow-
dery mildew and fertilizer-water stress (PM-n0w0). For the PM-YR, YR-n0w0 and PM-n0w0 models,
their verification accuracies were 83.3%, 88%, 88.75%, and the kappa accuracies were 63.41%,
74.79%, 71.43%, respectively. It indicated that the combination index derived from hyperspectral
data could be used to identify the different stresses and provide guides for crop management across
a large area.

Keywords: Winter Wheat, Yellow Rust (YR), Powdery Mildew (PM), Fertilizer-Water Stress
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1. INTRODUCTION
Winter wheat (Triticum aestivum L.) is one of the most
important food grain crops in the world. However, global
climate change has already had observable effects on the
environment, which has resulted in more stresses than

∗Corresponding author; E-mail:

usual in wheat production. In general, the conventional
stresses in winter usually refer to water stress and nitrogen
stress, which can cause major yield loss in winter wheat.
In recent years, the majority of wheat varieties are less
resistant to yellow rust, powdery mildew and other pests
and diseases. The crop diseases were inclined to outbreak
and cause the rapid spread when environmental conditions
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were appropriate. Yellow rust and powdery mildew are
infectious diseases across a large area, and can cause sig-
nificant yield loss.1 To figure out where the stresses are
coming from and what they are specifically in wheat plants
has led to much concerns on precision agriculture. Thus,
it is necessary to quantitatively identify different stresses
for agricultural management guides in wheat.
In comparison with traditional methods depending on

manual and visual assessment, many advanced techniques
have been used for stress detecting and monitoring, includ-
ing ultrasound technology, nuclear magnetic resonance
(NMR), X-ray techniques, multispectral and hyperspectral
technology and so on. Each technology has its own advan-
tages in detecting crop stress; however, hyperspectral tech-
nology has the more potential for accurately detecting and
distinguishing diseases over the large area.2

Some studies have just focused on monitoring yellow
rust or powdery mildew of winter wheat using differ-
ent remote sensing data. The spectral range of optical
remote sensing systems mainly relates to ultraviolet (200–
400 nm), visible (400–800 nm) and near-infrared (800–
2500 nm) bands which were generally used in disease
monitoring. The reflectivity in these bands have more
direct responses to biochemical state (pigment content,
nutrient and moisture content) and physiological state of
the plant (structure, morphology).3–5 Huang et al.6 inves-
tigated the relationship between the spectral reflectance
and disease severity and screened the diseases sensitive
bands. Liu et al.7 found that wheat yellow rust is closely
related to the 560–670 nm band reflectance and then
constructed a measurement model. Graeff et al.8 found
that the sensitive bands were located in 490, 510, 516,
540, 780, and 1300 nm by analyzing the leaf spectra of
wheat infected with powdery mildew and take-all disease,
Huang et al.6 successfully monitored the wheat disease
using photochemical reflectance index (PRI). In terms of
stress recognition, Bravo et al.9 investigated the appli-
cation of hyperspectral data in winter wheat for early
detection of yellow rust disease. Luo et al.10 identified
yellow rust from the conventional stress via the feature
space that was constituted by Normalized difference veg-
etation index (NDVI) and Physiological reflectance index
(PhRI), and the accuracy was more than 70%. Devadas
et al.11 attempted to distinguish yellow rust, leaf rust and
stem rust by spectral features. As demonstrated by their
studies, ARI (Anthocyanin Reflectance Index) can effec-
tively distinguish normal and yellow rust blade, but can-
not accurately distinguish leaf rust and stem rust blade,
while TCARI (Transformed Chlorophyll Absorption and
Reflectance Index) could.
Previous studies showed that the changes in chlorophyll

and moisture content were similar for different crops under
different stresses, but they were very different for crop
management in the field under different stresses. For exam-
ple, the application of pesticide to water-stressed crops will

lead to crop damage and yield loss. The ref how to iden-
tify disease and fertilizer-water stress is very important for
precision crop management.
In this study, four different treatments (yellow rust,

powdery mildew, fertilizer-water stress and normal) were
applied in the experimental field. The sensitive bands for
each stress was identified by qualitative analysis, and then
the vegetation indices were extracted and the responses
to various stresses were analyzed. Finally, the selected
combination vegetation indices were used for the quanti-
tative identification and verification of different stresses.
This study can provide a theoretical basis for hyper spec-
tral remote sensing applied for quantitative identification
of different stresses and guiding the crop management
accurately.

2. MATERIALS AND METHODS
2.1. Experimental Design and Field Conditions
The experiments were conducted at Beijing Xiaotang-
shan Precision Agriculture Experimental Base, located in
Changping District, Beijing (40� 10.6′ N, 116� 26.3′ E)
during the 2001–2002 growing season.The average top-
soil nutrient status was as follows: organic matter 1.4%,
alkali-hydrolysis nitrogen 63.3 mg/kg, and rapidly avail-
able potassium 123.4 mg/kg. The experimental field has a
length of 200 m and a width of 80 m.
Two wheat cultivars (98–100 and Beinong 10) were

used in the disease experiment . The 98–100 is susceptible
to yellow rust and Beinong 10 is susceptible to powdery
mildew. Yellow rust and powdery mildew were inoculated
by spore inoculation according to the National Plant Pro-
tection Standard12 in early April, 2002. Three cultivars
used in fertilizer-water stress experiment were ‘Jingdong
8’, ‘Jing 9428’ and ‘Zhongyou 9507’. The experiment
included nine treatments of fertilizer-water stress and one
normal processing, and the planting area was 0.3 ha. Nine
fertilizer-water stress treatments were as follows: 300 kg ·
ha−1 nitrogen and 300 m3 ·ha−1 water; 300 kg ·ha−1 nitro-
gen and 150 m3 ·ha−1 water; 300 kg ·ha−1 nitrogen and no
irrigation; 100 kg ·ha−1 nitrogen and 300 m3 ·ha−1 water;
100 kg ·ha−1 nitrogen and 150 m3 ·ha−1 water; 100 kg ·ha−1

nitrogen and no irrigation; no fertilization and 300 m3 ·
ha−1 water; no fertilization and 150 m3 ·ha−1 water; no fer-
tilization and no irrigation. Normal processing was applied
with a recommended rate13 which received 200 kg · ha−1

nitrogen and 450 m3 · ha−1 water. Three cultivars were
evenly distributed in each treatment plot.

2.2. Measurements of Canopy Spectra
A high spectral resolution ASD Field Spec Prospectrom-
eter (Analytical Spectral Devices, Boulder, CO, USA) fit-
ted with a 25 degree field of view fore-optic was used
to measure in-situ canopy spectral reflectance. All canopy
spectral measurements were taken from a height of 1.3 m
above ground (the height of the wheat is 90± 3 cm at
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maturity). Spectra were acquired in the 350–2500 nm spec-
tral rang eat a spectral resolution of 3 nm between 350 nm
and 1050 nm and 10 nm between 1050 nm and 2500 nm.
A 40 cm× 40 cm BaSO4 calibration panel was used for
calculating the reflectance. All irradiance measurements
were recorded as an average of 20 scan sat an optimized
integration time. The field measurements were made under
clear sky conditions between 10:00 and 14:00 (Beijing
local time).

3. RESULTS AND ANALYSIS
3.1. Canopy Spectral Features
In order to extract the sensitive bands from different
stresses, the in-situ canopy spectral reflectance curves of
normal treatment (Normal), yellow rust (YR), powdery
mildew (PM) and fertilizer-water stress (n0w0) in winter
wheat were obtained during three critical growth periods
(Figs. 1(a)–(c)).
In comparison with the spectrum of Normal, the spectra

of YR, PM and n0w0 had almost the same change trend
at different growth stages. The canopy reflectance of Nor-
mal wheat was lower in yellow region (550–660 nm) and
higher in near infrared region (760–1350 nm) compared
to the stressed wheat by yellow rust, powdery mildew and
fertilizer-water. The canopy spectral reflectance of stressed
wheat was significantly lower than that of the Normal,
especially at 760 nm. In general, two moisture absorp-
tion valleys (1450 and 1950 nm) also became shallow. The
results showed that the spectral features of yellow rust,
powdery mildew and fertilizer-water stress were similar
and was difficult to identify the different stresses using the
wide sensitive bands. Conversely, the hyper spectral curves
could separate them and provided the possibility for the
identification of different stresses (Fig. 1).

3.2. Vegetation Indices and Responses
The combination vegetation index was used to identify
the different stresses. As shown in Table I, fifteen com-
monly used vegetation indices were selected, which were
sensitive to chlorophyll content, canopy architecture or
water status of plants. For example, Structural Independent
Pigment Index (SIPI) is closely associated with chloro-
phyll content, and Normalized Difference Vegetation Index
(NDVI) and Moisture Stress Index (MSI) are sensitive to
canopy architecture and water status of plants, respectively.
The T -test was done to each vegetation index for inde-

pendent samples. (Table II) I indicated that the responses
of vegetation indices (VIs) to different stresses were dis-
crepant, and some indices may only respond to a certain
stresses.
As shown in Table II, most vegetation indices hadsig-

nificant responses (p < 0�05) to yellow rust except for
TCARI, SIPI and TVI. Among them, NRI and NPCI
reached a very significant level (p < 0�001). For the
powdery mildew, 10 vegetation indices had significant

Fig. 1. Comparison of the spectral separability of normal and stressed
samples at different growth stages. (a) elongation stage; (b) flowering
stage; and (c) filling stage.

responses (p < 0�05) Conversely, only 5 vegetation indices
had responses to fertilizer-water stress, due to the effect
of soil basal fertilizer. According to the analysis results,
the combination indices derived from NDVI and PhRI
(NDVI-PhRI), MSR and PhRI (MSR-PhRI), NRI and
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Table I. Definitions of a set of vegetation indices used in this study.

Vegetation index Definition Description Literatures

MSR Modified simple ratio (R800/R670 −1)/(R800/R670 +1)1/2 Chen (1996); Haboudane et al.
(2004)14�15

NDVI Normalized difference vegetation
index

�R840 −R675�/(R840 +R675� Rouse et al. (1973)16

NRI Nitrogen reflectance index (R570 −R670�/(R570 +R670� Filella et al. (1995)17

PRI Photochemical reflectance index (R570 −R531�/(R570 +R531� Gamon et al., 199218

TCARI The transformed chlorophyll
absorption and reflectance index

3× ��R700 −R670�−0�2× �R700 −R550�× �R700/R670�� Haboudane et al. (2002)19

SIPI Structural independent pigment
index

(R800 −R445�/(R800 −R680� Peñuelas et al. (1995)20

PSRI Plant senescence reflectance index (R680 −R500�/R750 Merzlyak et al. (1999)21

PhRI Physiological reflectance index (R550 −R531�/(R550 +R531� Gamon et al. (1992)18

NPCI Normalized pigment chlorophyll
ratio index

(R680 −R430�/(R680 +R430� Peñuelas et al. (1994)22

ARI Anthocyanin reflectance index (R550�
−1− �R700�

−1 Gitelson et al. (2001)23

TVI Triangular vegetation index 0.5[120(R750 −R550�−200�R670 −R550�] Broge and Leblanc (2000)24;
Haboudane et al. (2004)15

DSWI Disease water stress index (R802 +R547�/(R1657+R682� Galvão et al. (2005)25

MSI Moisture stress index R1600/R819 Hunt and Rock (1989); Ceccato
et al. (2002)26�27

RVSI Red-edge vegetation stress index [(R712 +R752�/2�−R732 Merton and Huntington (1999)28

MCARI Modified chlorophyll absorption in
reflectance index

(R701−R671�−0�2�R701−R549�/(R701/R671� Daughtry et al. (2000)29

RVSI (NRI-RVSI) were used to identify powdery mildew
and yellow rust (PM-YR), yellow rust and fertilizer-water
stress (YR-n0w0), and powdery mildew and fertilizer-
water stress (PM-n0w0), respectively.

3.3. Quantitative Identification of Different Stresses
on Winter Wheat

3.3.1. Prediction Models Based on 2-Dimensional
Feature Space

The prediction models were established for distinguish-
ing the PM-YR, YR-n0w0 and PM-n0w0. 20 PM samples

Table II. Independent t-tests for four different stresses.

Stress

Index YR PM n0w0

MSR 0�003b 0�069 0�064
NDVI 0�008b 0�019a 0�056
NRI 0�000c 0�046a 0�052
PRI 0�004b 0�332 0�401
TCARI 0�329 0�017a 0�884
SIPI 0�058 0�006b 0�050
PSRI 0�005b 0�004b 0�037a

PhRI 0�041a 0�325 0�578
NPCI 0�000c 0�006b 0�060
ARI 0�001b 0�047a 0�034a

TVI 0�844 0�831 0�604
DSWI 0�013a 0�125 0�029a

MSI 0�027a 0�039a 0�015a

RVSI 0�005b 0�005b 0�017a

MCARI 0�014a 0�003b 0�218

Notes: aMean difference is significant at 0.950 confidence level; bMean difference
is significant at 0.990 confidence level; cMean difference is significant at 0.999
confidence level.

and 20 YR samples were used for the PM-YR, and the
2-dimensional feature space coordinate was established
with NDVI as the abscissa and PhRI as the vertical axis
(Fig. 2(a)). In the 2-dimensional feature space, the sam-
ples were distributed in different regions. According to the
distribution of samples, the discriminant curve of stress
samples could be established., The quadratic equation
(PhRI= 0.073 NDVI2−0.022 NDVI+0.05) was obtained
by fitting the stress samples near the classification border.
If the observation point was above the discriminant curve,
we believed that it was the YR sample, otherwise, it was
the PM sample. The model accuracy reached 82.5% using
the 40 modeling samples (Table III). The 2-dimensional
feature space of YR-n0w0 and PM-n0w0 were shown in
Figures 2(b) and (c). For the YR-n0w0 and PM-n0w0, the
quadratic equations were PhRI = 0.0078 MSR2− 0.0223
MSR+ 0.0773 and RVSI = 3.395 NRI2+ 1.984 NRI−
1.382, and the accuracies were 87.5% and 82.5%, respec-
tively (Tables IV and V).

3.3.2. Verification
Another 20 PM samples, 40 YR samples and 60 n0w0
samples, except for building up the models, were used
to test the accuracies of prediction models in this study
(Fig. 3). Classification prediction of verification samples
were assessed using the overall accuracy and Kappa coef-
ficient, and the error matrices were calculated (Tables VI–
VIII). The results showed that the overall accuracies
of PM-YR, YR-n0w0 and PM-n0w0 were 83.3%, 88%,
88.75%, and Kappa coefficients were 63.41%, 74.79%,
71.43%. Therefore, the proposed method can be used to
identify the stress samples.

4 Sensor Letters 12, 1–7, 2014
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Fig. 2. Quantitative identification and prediction models for different
stresses. (a) PM-YR; (b) YR-n0w0; and (c) PM-n0w0.

4. DISCUSSION
It is important to distinguish the different stresses in the
farmland management. However, it is difficult to achieve

Table III. Identification accuracy of the PM-YR model.

Stress Sample points Correct points Accuracy (%)

PM 20 18 90
YR 20 15 75
Total 40 33 82.5

Table IV. Identification accuracies of the YR-n0w0 model.

Stress Sample points Correct points Accuracy (%)

YR 20 18 90
n0w0 20 17 85
Total 40 35 87.5

Table V. Identification accuracies of the PM-n0w0 model.

Stress Sample points Correct points Accuracy (%)

PM 20 16 80
n0w0 20 17 85
Total 40 33 82.5

Table VI. The error matrices of verification samples (PM-YR).

PM YR Total

PM 16 4 20
YR 6 34 40
Total 22 38 60

Kappa coefficient= 0�6341.

Table VII. The error matrices of verification samples (YR-n0w0).

YR n0w0 Total

YR 33 7 40
n0w0 5 55 60
Total 38 62 100

Note: Kappa coefficient= 0.7479.

such a goal without enough prior knowledge using cur-
rent methods. Hyper spectral imaging can potentially and
rapidly detect stresses or diseases for crops over large
areas.2 Moshou et al.30 utilized spectral images from 460
to 900 nm to successfully detect yellow rust in wheat.
However, this study was performed under almost the

same ecological conditions, and it cannot be applied
directly to different ecological conditions. Studies on how
environmental conditions influence on different stresses

Table VIII. The error matrices of verification samples (PM-n0w0).

PM n0w0 Total

PM 17 3 20
n0w0 6 54 60
Total 23 57 80

Kappa coefficient= 0.7143.

Sensor Letters 12, 1–7, 2014 5
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Fig. 3. Validation results of three prediction models. (a) PM-YR;
(b) YR-n0w0; and (c) PM-n0w0.

should be carried out later. Moreover, spectral features
used in this study were limited, which may not reflect the
essential characteristics of the stress. More spectral fea-
tures should be considered for further studies.

5. CONCLUSION
Nutrient stress, including water and nitrogen fertilizer
excess and deficiency, is the common stress type of farm-
land management. Responses to diseases and nutrient
stress in crops have good consistency, and it remains dif-
ficult and challenging for remote sensing technologies to
identify crop diseases and nutrient stresses.31

In this study, we compared the spectral curves of dif-
ferent stresses and calculated the responses of 15 com-
monly used vegetation indices using independent samples
T -test method. Finally, NDVI-PhRI, MSR-PhRI and NRI-
RVSI were used to identify powdery mildew and yellow
rust (PM-YR), yellow rust and fertilizer-water stress (YR-
n0w0), and powdery mildew and fertilizer-water stress
(PM-n0w0), respectively. The verification results showed
that the overall accuracies were 83.3%, 88%, 88.75%,
and Kappa accuracies were 63.41%, 74.79%, 71.43%,
respectively. Therefore, the quantitative identification mod-
els can be used to predict the stress types of samples.
The prediction models are established during three criti-
cal growth periods (elongation stage, flowering stage, and
filling stage) of winter wheat and have good practicability.
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