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Kernel discriminant analysis (KDA) can be used as a feasible strategy for identifying plant stresses, espe-
cially for detection of pests and diseases, considering the highly nonlinear distribution of hyperspectral
absorption features that respond to biophysical variations in plants caused by foliar lesions. However,
traditional computation of the kernel projection features produced by hyperspectral data is always
affected by redundant information among the numerous wavelengths, subsequently leading to dimen-
sion disaster. In order to alleviate this problem, the aim of this study is to propose a spectral vegetation
indices-based kernel discriminant approach (SVIKDA) for the detection and classification of yellow rust,
aphid, and powdery mildew in winter wheat at the leaf and canopy level. Leaf and canopy level hyper-
spectral reflectance datasets were measured with a total of 314 and 187 samples, respectively.
Fourteen Spectral Vegetation Indices (SVIs) related to foliar biophysical variations were employed as
the input sample space; then, by using correlation analysis and independent t-tests, redundant informa-
tion among SVIs was removed. Subsequently, a Gaussian kernel function was utilized to cast discriminant
analysis into a nonlinear framework. Finally, using 5-fold cross validation, performance and transferabil-
ity of this approach were evaluated. Our results revealed that the SVIKDA outperformed conventional lin-
ear discriminant approach on detection and classification among healthy wheat leaves and leaves
infected with yellow rust, aphids, and powdery mildew. At the leaf level, the classification returned
the overall accuracies (OA) of 82.9%, 89.2%, 87.9% for three occurrence levels, i.e. slight, moderate, and
severe (Kappa > 0.85). Depending on the types and severities of infestations, the classification accuracy
was between 76% and 95%; At the canopy level, the multiple classifications between healthy leaves
and leaves with damages from the three different infestations still achieved an accuracy greater than
87% (Kappa = 0.84). In addition, this approach was also successfully applied in disease index (DI) estima-
tion for a specific infestation at the leaf level, and optimal DI estimation returned high coefficients of
determination (R2 > 0.7). Furthermore, compared with the commonly used automatic classification algo-
rithm, the SVIKDA achieved an accurate classification without losing the pathological basis of input vari-
ables. The results suggest that this method has reliable transferability and great robustness in detecting
and discriminating pests and diseases for guiding precision plant protection.

� 2017 Published by Elsevier B.V.
1. Introduction

Global change and natural disturbances have already caused a
severe co-epidemic of pests and diseases in winter wheat (Triticum
aestivum L.), such as aphids, fusarium, yellow rust, and powdery
mildew. These threats may result in serious deterioration of grain
yield and quality (Savary et al., 2012). Traditionally, manual scout-
ing has been the only way to detect and discriminate these crop
pests and diseases (Duveiller et al., 2007), but these investigations
are expensive and time-consuming. Even after having identified
the distribution of different infected wheat patches, precise use
of bactericides and pesticides is hard to achieve in entire fields
(Luck et al., 2011; Mahlein et al., 2012). To mitigate the problems
of crop monitoring and pesticide overuse, real-time characteriza-
tion, identification, and classification of different pests and
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diseases is a necessity. As a non-destructive way of collecting
ground information, hyperspectral remotely sensed technologies
have proven to be feasible in lesion detection and vitality monitor-
ing (Buitrago et al., 2016; Jaillais et al., 2015; Lópezlópez et al.,
2016; Yuan et al., 2013). Among different types of spectral features,
spectral vegetation indices (SVIs) are efficient ways to capture the
weak spectral signals that indicate certain foliar biophysical varia-
tions caused by pests and diseases, such as pigment degradation,
reduction in canopy biomass, and a decrease in leaf water content.
Huang et al. (2003) determined the sensitive bands of stripe rust at
350 nm, 780 nm, and 1250 nm, and based on these findings, they
proposed to use the photochemical reflectance index (PRI) to quan-
tify disease severity at the canopy level. Bravo et al. (2003) used
wheat canopy spectral information at the ranges of 740–760 nm
and 620–640 nm to calculate the Normalized Difference Vegeta-
tion Index (NDVI) and to successfully extract wheat patches with
powdery mildew. Feng et al. (2016) measured canopy spectra of
wheat at different levels of powdery mildew incidence, suggesting
that the best two-band vegetation index ranges for powdery mil-
dew detection were between 570–590 nm and 536–566 nm for
the ratio vegetation index (RVI), and 568–592 nm and 528–
570 nm for NDVI. These studies have demonstrated that a high
spectral resolution, i.e. the use of narrow bands, is essential to dis-
criminate biophysical variations in leaves caused by different
infestations, since broadband indices are unable to exploit the sub-
tle spectral features, meanwhile, the use of broadband information
would limit the practical use of such approaches to the availability
of hyperspectral data (Gamon et al., 1992). Therefore, in this study,
only the hyper-spectral vegetation indices are employed.

Practical applications of remote techniques for crop control and
management are lacking, and automatic or semi-automatic meth-
ods for detecting and monitoring various pests and diseases have
been rarely considered, owing to the fact that 1) the pre-existing
infestation sensitive indices are nonlinearly varying as the increase
of pathogen attack (Bannari et al., 2007), 2) spectral feature diver-
sities among the different pests and diseases are too weak to be
discriminated (Guan et al., 2014; Huang et al., 2014). In order to
alleviate these problems, nonlinear extensions of statistical learn-
ing methods through the ‘‘kernel trick” have been proposed to
extract the principle components of input samples without losing
the key pathogen attack information that allows for the separation
of pests and diseases by species and severity (Mika et al., 1999),
Then accurate and robust classification results could be achieved
with hyperspectral data (Bengio et al., 2004). The main idea of
kernel-based approaches is to map input data to a novel feature
space through a nonlinear mapping, which produces a set of pro-
jective feature vectors by maximizing the between-class covari-
ance and minimizing the within-class covariance (Baudat and
Anouar, 2000). These methods integrate statistics and geometry
in the so-called ‘‘kernel approaches” framework (Van et al.,
2002). For instance, Cai et al. (2007) made use of spectral regres-
sion and kernel discriminant analysis (KDA) for facial recognition.
Its computational costs was lower than the traditional linear dis-
criminant analysis.

However, the computational progress of the projective feature
vectors in the pre-existing KDA approaches involves eigen-
decomposition of an input matrix, which is very expensive when
a large number of hyperspectral bands are put into the model.
For better achievement of KDA in quantitative remote sensing
spectra processing, adopting sensitive SVIs instead of original
hyperspectral reflectance as the initial input matrix may be a
potential solution to this problem. In addition, given our literature
review, the nonlinear discriminant technique has received little
attention for detecting and classifying crop pests and diseases. In
our review, using the combinations and transformations of SVIs
as the original input sample space to develop a kernel function
for KDA progress was still lacking in the field of agricultural quan-
titative remote sensing. Therefore, to facilitate both comprehensive
combination of the sensitive SVIs and efficient computation in
KDA, an SVI-based kernel discriminant analysis (SVIKDA) was pro-
posed in this study to identify the healthy wheat and wheat
infested with yellow rust, powdery mildew, and aphid by enhanc-
ing the between-classes covariance and narrowing the within-class
covariance. Fourteen spectral vegetation indices (SVIs) were uti-
lized for characterizing the foliar lesions caused by different pests
and diseases. After filtering the redundant information among SVIs,
our method effectively achieved the following objectives: 1) detect
the spectral features of diseased and non-diseased wheat leaves, 2)
differentiate infestations of yellow rust, aphids, and powdery mil-
dew at both leaf and canopy levels, and 3) estimate the severity
levels of each infestation. This study will also provide a theoretical
basis for applying hyperspectral remote sensing to quantitatively
classify and monitor different diseases and pests on wheat from
a relatively early stage, and guide accurate field management.

2. Materials and methods

2.1. Experimental design and pathogen inoculation

The experiment was conducted at the Precision Agriculture
Experimental Base in Xiaotangshan, Changping, Beijing
(40�10.60N, 116�26.30E). The makeup of topsoil nutrients (0–
30 cm depth) in the experimental area was as follows: soil organic
matter 1.41–1.47%, nitrogen 0.07–0.11%, available phosphorus
content 20.5–55.8 mg kg�1, and rapidly available potassium
116.6–128.1 mg kg�1.

Two cultivars of winter wheat ‘98-100’ and ‘Jingdong8’ were
selected due to their susceptibility to both yellow rust and pow-
dery mildew. The cultivars ‘98-100’ and ‘Jingdong8’ were inocu-
lated with yellow rust and powdery mildew, respectively. In
accordance with the National Plant Protection Standard (NPPS),
yellow rust and powdery mildew were inoculated by spore inocu-
lation in early April. The wheat cultivar ‘Jingdong 8’ was inoculated
with aphids. During the growing season of winter wheat, wheat
aphids occurred in the experimental field patches naturally.

2.2. Data acquisition

2.2.1. Spectral measurement of leaf and canopy samples
In this study, an ASD FieldSpec spectrometer (Analytical Spec-

tral Devices, Inc., Boulder, CO, USA) was utilized to collect the leaf
and canopy spectral information. The spectrometer was fitted with
25� field-of-view bare fiber-optic cable, and operated in the 350–
2500 nm spectral region. The sampling interval was 1.4 nm
between 350 and 1050 nm, and 2 nm between 1050 and
2500 nm. The spectral resolution was 3 nm for the region of
350–1000 nm and 10 nm for the region of 1000–2500 nm.

For leaf spectral measurement, the ASD spectrometer was
equipped with a Li-Cor 1800-12 integration sphere (Li-Cor, Inc.,
Lincoln, NE, USA) used to collect the reflectance and transmittance
of the upper surfaces of leaves. Considering the similar characters
of near infrared bands between 800 and 1000 nm, only 400–
800 nm spectral region was used in analysis. For each sampled leaf
of wheat, five different zones were used to quantify the small but
not negligible within-leaf variability. The scan time required for
each sample was about two minutes. The sample was illuminated
by a focused beam, and the radiation captured by the spectrometer
was the average reflected radiation within the Li-Cor 1800-12 inte-
gration sphere. Data were collected around the middle of April,
since the three diseases were in the incidence stage at that time.
In the present study, spectra of 209 yellow rust-infested leaves,
140 aphid-infested leaves, and 133 powdery mildew-infested



Fig. 1. Average spectral signature of healthy leaves and yellow rust-, aphid- and powdery mildew-infested leaves at three incidence levels: a slight: 10% � INL < 40%, b
moderate: 40% < INL � 70%; c serious: 70% < INL � 100%.
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leaves were measured. The average spectral curves at different
incidence levels (INL) are presented in Fig. 1.

The canopy spectra were taken from a height of 1.3 m above the
ground (the height of the wheat was 90 ± 3 cm at maturity). A
40 cm � 40 cm BaSO4 calibration panel was used for reflectance
calculation. All irradiance measurements were recorded as an aver-
age of 20 scans at an optimized integration time. All measurements
were made under clear blue sky conditions between 10:00 and
14:00 (Beijing local time).

2.2.2. Determination of disease severity
The disease index (DI) has been commonly cited to describe the

severity of wheat diseases denoted by the portion of disease pus-
tules on the leaf (Graeff and Claupein, 2007). All of the sample
leaves were inspected by the National Rules for the Investigation
and Forecasting of Crop Diseases (GB/T 15795-1995). Due to the
difficulty of accurate assessment, the sample leaves with a lesion
coverage ratio less than 1% were regarded as a healthy class.
According to this rule, the damaged wheat leaves were grouped
into three classes, slight (0% � DI � 20%), moderate (20%
< DI � 45%), and severe (DI > 45%). The DI was calculated using
Eq. (1)

DIð%Þ ¼
Pðx� f Þ
n�P f

� 100 ð1Þ

where f is the total number of leaves of each degree of disease
severity, x is the INL, and n is the highest incidence level.

2.3. Analytical methods

2.3.1. Selection of pre-existing SVIs
The main objective of this step was to find the SVIs sensitive to

physiological and biochemical variations caused by yellow rust,
Table 1
Spectral vegetation indices and equations used in this study (R = hyperspectral reflectance

Definition Equation

Modified simple ratio, MSR (R800/R670-1)/(R800/
Normalized Difference Vegetation Index, NDVI (R840 � R675)/(R840

Nitrogen Ratio Index, NRI (R570 � R670)/(R570

Photosynthetic Radiation Index, PRI (R570 � R531)/(R570

Structural Independent Pigment Index, SIPI (R800 � R445)/(R800

Physiological Reflectance Index, PhRI (R550 � R531)/(R550

Normalized Pigment Chlorophyll Index, NPCI (R680 � R430)/(R680

Anthocyanin Reflectance Index, ARI (R550)�1 � (R700)�1

Ratio Vegetation Structure Index, RVSI [(R712 + R752)/2]�R
Modified Chlorophyll Absorption Reflectance index, MCARI (R701�R671)�0.2(R7

Health-index, HI (R739 � R402)/(R739

Yellow rust index, YRI (R515 – R698)/(R515 +
Aphid-index, AI (R730 � R419)/(R730
Powdery mildew index, PMI (R400 – R735)/(R400 +
aphids, and powdery mildew. Specifically, 14 candidate SVIs were
adopted, namely for the biophysical parameters: Normalized Dif-
ference Vegetation Index (NDVI), Modified Simple ratio (MSR),
Ratio Vegetation Structure Index (RVSI), Health-index (HI); for pig-
ment variation: Structural Independent Pigment Index (SIPI), Nor-
malized Pigment Chlorophyll Index (NPCI), Anthocyanin
Reflectance Index (ARI), Modified Chlorophyll Absorption Reflec-
tance index (MCARI); for water and nitrogen content: Nitrogen
Ratio Index (NRI), for photosynthetic activity: Photosynthetic Radi-
ation Index (PRI), Physiological Reflectance Index (PHRI); and for
crop disease: Yellow rust-index (YRI), aphid index (AI), and Pow-
dery Mildew-index (PMI), The definitions, descriptions, and refer-
ence sources for these 14 SVIs are summarized in Table 1.

2.3.2. Pre-processing of the spectral feature sets
In order to create a high-efficiency operation, we reduced the

redundant information and multicollinearity effect between the
candidate spectral features by making an a priori knowledge-
based pre-selection to get rid of excessive correlated vegetation
indices by using two standards: (1) A correlation analysis (CA)
was used between SVIs and DI to screen the SVIs significantly cor-
related to healthy wheat, yellow rust, powdery mildew, and
aphids, (2) An independent t-test was used to analyze the response
of yellow rust, powdery mildew, and aphids in the SVI set and to
screen the specific indices that showed significant heterogeneity
to each disease (Daughtry et al., 2000; Gitelson et al., 2001). Finally,
intersected SVIs were obtained from the screening sets following
these two methods. After this procedure, the selected SVIs not only
responded to each disease, but also reflected the significant diver-
sity between them.

2.3.3. Analysis of a nonlinear discriminant algorithm
This work focuses on developing a kernel feature space that can

be used to enhance the between-class diversity among the target
).

Related to Reference

R670 + 1)1/2 Leaf area Chen (1996)
+ R675) Vegetation coverage Yuan et al. (2013)
+ R670) Nitrogen content Filella et al. (1995)
+ R531) Photosynthetic radiation Gamon et al. (1992)
� R680) Pigment content Penuelas et al. (1994)
+ R531) Light use efficiency Gamon et al. (1992)
+ R430) Chlorophyll ratio Penuelas et al. (1994)

Anthocyanin content Gitelson et al. (2001)
732 Biomass Merton (2007)
01�549)]/(R701/R671) Chlorophyll absorption Daughtry et al. (2000)
+ R402)�0.5R403 Greenness, biomass Huang et al. (2014)
R698)�0.5R738 Wheat disease
+ R419)�0.5R736 Wheat pest
R735)�0.5R403 Wheat disease



Fig. 2. Systematic approach to develop nonlinear discriminant analysis for pest and
disease discrimination.
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diseases and pests. Fig. 2 summarizes basic steps from spectral sig-
natures to kernel feature space and then to final classification,
which included selecting spectral features, and developing map-
ping rules.

The fundamental purpose of the nonlinear discriminant analysis
is to solve the limitation of linear discriminant analysis, by produc-
ing a set of nonlinear discriminant vectors in original space. Math-
ematically, for a given mapping rule U, the pattern in the original
input data space Rn could be mapped in to a new feature space F

U : SVIs#Rn ð2Þ

x#UðxÞ ð3Þ
The nonlinear discriminant can be achieved by maximizing the

following criterion:

JKðaÞ ¼ aTðKWKÞa
aTðKKÞa ð4Þ

where the matrix K is the kernel function matrix corresponding to a
given nonlinear mapping U, and W = diag(W1, W2,. . .,Wc), where Wj

(j=1,2,. . .,c) is a training samples matrix of class i. The details of
these definitions can be found in a study by Yang et al. (2004).
For solving this optimization problem, we considered the
decomposition of matrix K (Theodoridis and Koutroumbas, 2010).
Supposing that c1; c2; . . . ; cm are K’s orthonormal eigenvectors cor-
responding to m (m is the rank of K) nonzero eigenvalues
k1 P k2 P . . . P km, K can therefore be represented by

K ¼ PKPT ð5Þ

where P ¼ ðc1; c1; . . . ; cm), and K ¼ diagðk1; k2; . . . ; kmÞ
Substituting Eq. (5) onto Eq. (4) and defining b as:

b ¼ K
1
2PTa ð6Þ

then Eq. (4) could be simplified into

JKðbÞ ¼ bTðSbÞb
bTðStÞb

ð7Þ

where

Sb ¼ K
1
2PTWPK

1
2 ð8Þ
St ¼ K ð9Þ
It is obvious that St is positive definite and Sb is semi-positive

definite. Therefore, Eq. (7) is a regular generalized Rayleigh quo-
tient. By maximizing this equation, we can obtain a set of optimal
solutions b1; b2; . . . ; bd, which were the largest eigenvalues of St�1

Sb. Subsequently, it is easy to obtain a set of optimal solutions aj

(j = 1, 2, . . ., d) from Eq. (6). Therefore, the optimal canonical dis-
criminant score uj in features space is:

uj ¼ Qa ¼ QPK�1
2b ð10Þ
2.3.4. Calibration and validation of models
In order to assess the efficiency of the nonlinear discriminate

algorithm, we employed Jeffreys-Matusita Distance (JM-distance)
as the standard to quantify the separability between the different
classes (Kailath, 1967). The JM-distance threshold was set as 1.8
in this study.

Generally, training data and testing data have to be separated to
assess the SVIKDA model. To achieve a sufficient utilization of all
information in the training data, the classification performance
was evaluated by cross-validation, thus, the entire data set was
divided into k mutually exclusive groups following a k-fold cross-
validation partitioning design, out of which k-1 were used for
training, and the remaining used for validation (Kohavi, 1995).
Meanwhile, the Kappa value and Confusion Matrix, were used as
two important performance indicators for classification. These
accuracy indicators were given by the average values (Saadi
et al., 2007).

For each species of pests and diseases, the canonical discrimi-
nant scores were used to build the calibration models, thus, the
regression equations were then inverted to estimate the DIs of
the testing data set. Here, three types of regression models (linear,
exponential, and polynomial) built with k-folds partitions were
employed. Note that each estimation model allowed us to compare
between the estimated DIs and measured DIs, and evaluate the
performance of the canonical discriminant scores on DIs predic-
tion. These methods reduced the dependence on a single partition
into validation data sets. It also guaranteed that all samples were
used for both training and validation with each sample used for
validation exactly once. The coefficient of determination (R2) and
root mean square error (RMSE) were employed as the accuracy
indicators.
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3. Results

3.1. Sensitive SVIs for yellow rust, aphids, and powdery mildew

The threshold-based classification ability tests of each SVI for
different diseases and pests are shown in Table 2. Meanwhile,
the correlation analyses and the independent t-tests of the SVIs
are shown in Table 3. The intersection of these SVIs represents
the ideal features that contributed most in differentiating among
the healthy class and pest and disease classes, including MSR,
PRI, SIPI, HI, YRI, and PMI.

3.2. Classification and prediction of healthy leaves and leaves with
symptoms of yellow rust, aphids, and powdery mildew

The SVIs identified by the correlative analysis and independent
t-test were used as the input sample space to train the SVIKDA. Fol-
lowing the procedure of Section 2.3.3, we selected a Gaussian Ker-
nel for nonlinear mapping of feature space:

kðx; yÞ ¼ exp � x� yk k2
2r2

 !
; r 2 R ð11Þ
Table 2
Comparison of the independent classification abilities of the candidate SVIs.

Vegetation indices Classification accuracy (%)

Healthy Yellow rust Aphids Powdery mildew

MSR *** * * *

NDVI ** ** * **

NRI * * * *

PRI * *** * **

SIPI * ** * ***

PhRI * ** * *

NPCI * ** * **

ARI * ** * **

AVSI * ** * *

MCARI * * * *

HI *** ** ** **

YRI ** *** ** **

AI ** * *** **

PMI * ** *** ***

Note:
*** Classification accuracy � 60%.
** 30% � classification accuracy < 60%.
* Classification accuracy < 30%.

Table 3
Correlative analysis and independent t-test of different SVIs.

Correlation Independent t-test

H YR A PM H&Oth YR&Oth A&Oth PM&oth

MSR + +
NDVI + + +
NRI
PRI + + +
SIPI +
PhRI
NPCI
ARI + +
AVSI
MCARI
HI + +
YRI + +
AI +
PMI + + + +

Note: + significant spectral vegetation indices (for correlation analysis, p < 0.05; for
independent t-test, p < 0.05). H = healthy, YR = yellow rust, A = aphid, PM = pow-
dery mildew, Oth = Others.
In this case, to better test the classification ability at the three
different occurrence levels, three classification models were estab-
lished, i.e. slight, moderate, and severe, respectively. Here, the
canonical discriminant coefficients are listed in Table 4, which
illustrates that MSR, SIPI, and PMI dominated the first canonical
discriminant function (R2 > 0.7) (CDF-1); PRI and SIPI dominated
the second canonical discriminant function (CDF-2); while HI and
YRI dominated the third canonical discriminant function (CDF-3).

For the slight level, CDF-1 significantly accounted for 59.1% of
the variation, and CDF-2 accounted for 28%, i.e. the accumulated
contribution reached 87.1%; for the moderate level, CDF-1 signifi-
cantly accounted for 67.1% of the variation, and CDF-2 also
accounted for 30.8% (i.e. the accumulated contribution reached
94.9%); for the severe level, the CDF-1 significantly accounted for
74.2%, while CDF-2 only accounted for 21.3% (i.e. the accumulated
contribution reached 95.5%). The first two canonical discriminant
functions were employed to establish the projective scatter of dis-
criminate scores (Fig. 3). It was clear that, for the slightly diseased
level, CDF-1 was able to discriminate the aphid-infected leaves
from other classes, but, with the addition of CDF-2, the between-
class distances among classes were magnified (JM distance greater
than 1.8) (Fig. 3a). For themoderate level, CDF-1 revealed great per-
formance for detection of all infestation samples, while CDF-2 was
able to discriminate the healthy samples (JM distance greater than
1.9) (Fig. 3b). Similarly, for the severe level, the combination of CDF-
1 and CDF-2 performed better for differentiating diversities among
healthy and infestation classes (JM distance greater than 1.8).

The Confusion Matrix for classification based on the cross-
validation samples is shown in Table 5, which clearly demonstrates
that the overall accuracies at the three DI levels were, respectively,
82.9%, 89.2%, 87.9%, and the Kappa values at the three occurrence
levels were greater than 0.8. For the slight level, the highest mis-
classification existed in the aphid-infested samples; for moderate
and severe levels, the main misclassification occurred between yel-
low rust- and powdery mildew-infested samples.

Based on the discriminant scores calculated by CDF-1, the
empirical regression models were determined, and the resultant
predictive equations are listed in Table 6. The results demonstrated
that, for the slight occurrence level, the relationship between the
DIs and the scores were exponential, with the optimal values of
R2 greater than the linear and polynomial models; while for mod-
erate and severe levels, the linear regression outperformed the
other two models in DI prediction.

The scatter plots between the measured DIs and the estimated
DIs are illustrated in Fig. 4. The reliability of the regression equa-
tion was satisfactory, with R2 values of 0.78, 0.82, and 0.83, and
RMSE values of 2.79, 2.02, and 2.3 for the three targeted pests
and diseases at the slight occurrence level (Fig. 4a–c); R2 values
of 0.86, 0.79, and 0.85, and RMSE values of 2.4, 3.47, and 2.28 at
the moderate occurrence level (Fig. 4d–f); and R2 values of 0.88,
0.89, and 0.79, and RMSE of 4.49, 3.34, and 3.58 at the severe
occurrence level (Fig. 4g–i), indicating that it is feasible to use
the canonical discriminant scores to build prediction models for
estimating the severities of pests and diseases with yellow rust,
aphids, and powdery mildew.

3.3. Accuracy assessment of KDA

Based on the 5-fold cross validation datasets, the accuracy
indices returned by the best and worst classifications are listed
in Table 7. Meanwhile, for the validation of the DI prediction
model, a comparison of the best and worst convergence based on
the optimal prediction models is shown in Fig. 5. These results
illustrate that, for the proposed KDA approach, the accuracies for
both classification and DI estimations only varied in a limited
range for different DI levels. In addition, from a small sample



Table 4
Standardized canonical coefficients (SCCs) and correlation coefficients (CCs) of discriminant canonical functions developed by the identified SVIs.

SVIs SCCs CCs

Slight CDF-1 CDF-2 CDF-3 CDF-1 CDF-2 CDF-3

MSR 0.354 �3.677 2.526 0.960 0.181 �0.045
PRI �1.220 2.802 1.104 �0.171 0.457 0.444
SIPI 3.382 2.511 1.095 0.620 �0.695 0.0561
HI �3.336 �3.092 �14.558 0.179 �0.237 �0.801
YRI �1.073 �3.271 1.491 �0.107 0.122 0.612
PMI 2.620 �1.896 0.889 0.575 0.158 0.174

Moderate
MSR 0.072 �0.747 0.513 �0.766 0.053 0.395
PRI �0.314 0.722 0.285 0.309 0.653 �0.294
SIPI 0.845 0.627 0.274 0.543 �0.616 �0.407
HI �0.171 �0.159 �0.747 0.183 �0.154 0.660
YRI 0.179 �0.695 0.561 0.192 0.114 0.515
PMI 0.220 �0.237 �0.801* 0.472 0.168 �0.174

Severe
MSR �1.267 �4.507 �0.273 0.881 0.093 �0.163
PRI 5.665 3.951 �2.559 �0.223 �0.612 0.098
SIPI �4.764 2.841 �2.345 �0.514 0.576 �0.341
HI 2.360 4.480 10.720 0.058 0.322 0.798
YRI 2.431 �1.216 1.860 0.125 �0.109 0.493
PMI �2.763 �1.738 �0.107 �0.557 �0.153 �0.183

Fig. 3. Projection of the discriminant scores of healthy leaf samples and leaves infected with yellow rust (YR), aphid (AH), and powdery mildew (PM) at (a) slight, (b)
moderate and (c) severe occurrence levels.

Table 5
Confusion matrix and accuracy assessment of the SVIKDA for leaf samples.

Prediction Ground truth U (%) OA (%) Kappa

Healthy YR Aphid PM

Slight 0% � DI � 20% Healthy 125 5 12 3 86.2 82.9 0.81
YR 2 71 8 7 79.8
Aphid 4 1 48 4 84.2
PM 3 6 4 42 76.3
P(%) 93.3 85.5 66.7 75

Moderate 20% < DI � 45% Healthy 130 3 10 2 89.6 89.2 0.87
YR 2 69 3 2 90.8
Aphid 2 1 46 4 86.8
PM 1 4 1 44 88
P(%) 96.3 89.6 76.7 84.6

Severe DI > 45% Healthy 138 2 4 1 95.2 87.9 0.83
YR 2 36 1 5 81.8
Aphid 2 0 24 1 88.9
PM 1 2 1 21 84
P(%) 97.2 90 80 75

Notes: OA = overall accuracy, P = producer’s accuracy, U = user’s accuracy.
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training perspective, different populations of training samples
were tested to observe the performance of the variables to evaluate
the scaling impact on the estimated DI, According to Fig. 5, the
coefficient of determination R2 at different scales increased in a
similar logarithmic function. It was clear that the rate of conver-
gence of R2 was consistent, when the average training population
was greater than 40, R2 would be greater than 0.8.

3.4. Validation and application at the canopy scale

To further validate the transferability of this nonlinear discrim-
inant approach, independent in-field canopy spectral data of yel-
Table 6
Statistical analysis of the relationship between canonical discriminant scores (x) and the p

Slight Moderate

Prediction equation R2 Prediction equation

YR y = 0.9338x + 0.6796 0.695 y = 0.966x + 0.6571
y = 1.732e0.75x 0.726 y = 0.4104e0.344x + 0.
y = �0.0382x2 + 0.2337x + 0.5024 0.701 y = �0.1057x2 + 1.25

AH y = 0.8111x + 1.5573 0.612 y = 1.0213x�1.6314
y = 0.21e0.49x 0.719 y = 0.9843e0.4373x

y = �0.0291x2 + 0.2308x + 0.3043 0.704 y = �0.016x2 + 0.157
PM y = 0.9495x + 4.447 0.696 y = 0.9531x + 1.1606

y = �0.0323e0.22x + 0.0131 0.721 y = 0.0052e0.552x � 0
y = �0.0287x2 + 0.2423x + 0.1129 0.696 y = �0.0004x2 + 0.00

Fig. 4. Scatter plots between the measured DIs and the best estimated DIs by SVIKDA
moderate occurrence level (20% < DI � 45%), (g–i) severe occurrence (DI > 45%). Here, YR
low rust, aphids, and powdery mildew were used. Owing to the
lack of a healthy wheat field during the sample period, only the
infestation samples were utilized. Considering that the accumu-
lated contribution rate of the CDFs was not as significant as the leaf
level (i.e., the first three CDFs accounted for 49.5%, 27% and 15.2%,
respectively), here, we employed the first three CDFs to build the
projective space. The scatter plots of the discriminant scores and
the classification results are shown in Fig. 6 and Table 8, respec-
tively. For these non-imaging canopy data, the JM-distances among
different classes were greater than 1.8, the producer’s accuracies
for yellow rust-, aphid- and powdery mildew-infested wheat were
88.2%, 91.8% and 87.9%, and the user’s accuracies were 89.1%,
redicted DI (y) of each pest and disease.

Severe

R2 Prediction equation R2

0.681 y = 0.9338x + 5.002 0.689
145 0.559 y = 1.4087e0.707x + 0.0148 0.672
48x + 1.0134 0.492 y = 0.4119x2 + 1.2548x + 1.0134 0.615

0.675 y = 0.9531x + 1.1606 0.655
0.657 y = 0.6883e0.6379x + 1.1587 0.534

2x + 0.1042 0.440 y = �0.0089x2 + 0.1169x + 0.1471 0.537
0.728 y = 0.8738x � 10.6368 0.710

.0166 0.624 y = �0.0114e0.1755x + 0.0727 0.641
42x + 0.0017 0.677 y = �0.01x2 + 0.1267x + 0.1223 0.545

at different leaf infestation levels: (a–c) slight occurrence (0% � DI � 20%), (d–f)
= yellow rust, AH = aphids, PM = Powdery mildew.



Table 7
Comparison of the classification ability of the SVM classifier with Characteristic Enhancement Space and traditional SVM based on common vegetation indices (SVIs)
characteristic space.

Disease severity Classification state Classification accuracy (%) Recall accuracy (%)

YR A PM YR A PM

0% � DI < 20% Optimal 79.8 84.2 76.3 85.5 72.7 75
Worst 67.1 61.3 63.1 81.2 63.4 70.2

20% � DI < 45% Optimal 90.8 86.8 88 89.6 76.7 84.6
Worst 83.3 64.7 76.8 83.5 67.5 79.2

DI � 45% Optimal 89.4 88.9 86 90.8 80 85.4
Worst 82.1 80.8 84.9 83.3 68.2 83.5

Fig. 5. Comparison of R2 of estimated DIs on leaf scales with different sample populations. (a) yellow rust, (b) aphids, and (c) powdery mildew.

Fig. 6. Scatter plots of the projected positions based on the first three CDFs in the kernel projective space.

Table 8
Confusion matrix and accuracy assessment of SVIKDA for canopy samples.

Prediction Ground truth U/% OA/% Kappa

YR Aphid PM

YR 57 1 6 89.1 87.7 0.84
Aphid 3 23 6 74.2
PM 5 2 84 92.3
P/% 88.2 91.8 87.9

Notes: OA = overall accuracy, P = producer’s accuracy, U = user’s accuracy.
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74.2%, and 92.3%, respectively. Meanwhile, the main misclassifica-
tion emerged between yellow rust and powdery mildew, which
was similar to the results at the leaf level.
4. Discussion

In general, the foliar symptoms caused by yellow rust, aphids,
or powdery mildew could induce wilting and discoloration in
appearance, and result in a series of physiological and biochemical
variations of leaves, i.e. pigments, internal and external structure,
water content, and biochemical concentration, subsequently
impacting photosynthetic activity (Goward et al., 2002; Moshou
et al., 2004). These infestation characteristics lead to leaf spectral
absorption changes on a series of hyperspectral bands. However,
owing to the complexity of the hyperspectral data, SVIs that con-
tain a combination of two or three specific wavelengths were
developed to reduce the number of bands (Mirik et al., 2012). In
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this study, by using correlation analysis and independent t-test,
several relevant SVIs were identified, SIPI for pigment variations,
PRI for photosynthetic activity, MSR for foliar structure, and HI
for plant stresses, YRI and PMI for crop infestations. These SVIs
were set as the input feature space for substitution of the original
hyperspectral bands in order to reduce effects of the redundancy
information and so-called ‘‘Hughes Phenomenon” (Pal and Foody,
2010).

Given our literature review, although the SVIs could be
regarded as the proxies to deduce biophysical changes in diseased
leaves, the detection and discrimination of various pests and dis-
eases based on a single SVI has not been feasible so far. Therefore,
a combined use of these comprehensive SVIs enhanced the infor-
mation content for automatic detection and classification that
were tied to the host-pathogen interaction of infestations and the
resistance reactions of plant tissues comprehensively, especially in
early infected stage when pathogens do not have an advanced
attack,. Taking powdery mildew for example, the major symptoms
are fluffy white mycelia covering the leaf surface, germs damaging
the plant’s internal structure and biochemical concentration, sub-
sequently influencing the maximum absorption of carotenoids,
causing reflectance changes near 515 nm, 698 nm and 738 nm.
These influences of fungal tissue on the leaf surface could be
detected by the combination of MSR, PRI, SIPI, and PMI (Penuelas
et al., 1995).

This study proved the feasibility of the nonlinear strategy of
SVIKDA for detecting and classifying winter wheat leaves inocu-
lated with different infestations. Compared to the conventional lin-
ear discriminant analysis (LDA) and support vector machine (SVM)
methods, this study took advantage of a kernel mapping function
to establish the nonlinear framework of SVIKDA without losing
the original biophysical and pathological basis of the input vari-
ates. The principle advantage of this is that, based on a minimum
squared error cost function, the classification hyperplanes could
be obtained without the need for an additional transformation or
classification technique. The SVIKDA successfully achieved accu-
rate classification and prediction of yellow rust, aphid, and
powdery mildew by adopting the Gaussian kernel function to
enhance the between-class variance and minimize the within-
class variance, which outperformed the conventional LDA and
SVM on the detection of the target pest and diseases. The compar-
ison of average classification error by using LDA, SVM, and SVIKDA
is presented in Table 9, which revealed that, by using the same SVIs
as the input samples, the SVIKDA classification error for each infes-
tation is noticeably less.

Specifically, as illustrated by the results mentioned in the last
section, this nonlinear strategy of SVIKDA was able to improve
the detection and discrimination of pests and diseases in several
aspects. Firstly, by using the SVIKDA, CDF-1 was regarded as the
principle contributor to the detection of healthy wheat leaves from
the inoculated leaves, and when combined with CDF-2 or CDF-3,
the different species and severities of target pest and diseases were
differentiated accurately. Secondly, the 5-folds cross validation
indicated that this algorithm returned a relatively stable precision
for both classification and DI estimation by using the discriminant
Table 9
Comparison of the classification error based on the SVIKDA and conventional LDA.

Leaf state Classification error (%)

SVIKDA LDA SVM

Health 3.7 8.9 5.2
Yellow rust 10.4 14.5 12.4
Aphid 16.3 23.5 18.7
Powdery mildew 15.4 20.4 17.5
scores produced by CDFs. The slight fluctuations could be
accounted for the random selection of training data and testing
data. The correlated relationship between the measured DIs and
the estimated DIs for the slight level was exponential, while for
moderate and severe levels, the correlations were closer to linear.
Moreover, after testing the effects of a small size of training data,
we could conclude that this algorithm has great potential for
breaking through the restrictions of small-sample learning, which
guaranteed a stable output with precise classification. Finally, this
SVIKDA has successfully been utilized at the canopy level, which
demonstrates the feasibility and transferability of this method for
practical application. In addition, it is noteworthy that, several
characteristics of the SVIKDA, such as the mutually complementary
of the two discriminant subspaces produced by SVIKDA procedure
and its ability to remove the background spectral variation, maybe
valuable for disease monitoring with aerial or satellite remote
sensing imagery and detecting disease infestations from other
stresses (e.g. fertilizer and water stresses) at the regional level.
However, the hyperspectral curve measured by a non-imaging sen-
sor is the average reflectance of healthy and diseased leaf tissue
(Mahlein et al., 2012). This typically leads to degenerated accuracy
for the classification of the characteristic symptoms at the slight
occurrence level due to the small destructive colonies. Therefore,
considering the diseased tissue on the leaf surface impacts the
spectral signatures like a dusty coat (Rumpf et al., 2010), further
investigation with imaging sensor system may be necessary for
better understanding the pathogen-host interactions and further
improving the classification accuracy.

In conclusion, the proposed SVIKDA is characterized by a high
sensitivity and robustness for the detection and classification of
winter wheat pests and diseases. By implementing this method,
a promoted classification accuracy has been achieved. In addition,
the ability of this model to be generalized has been proved by a
cross-validation procedure. Compared with commonly used linear
classification techniques, this progress with SVIKDA provided three
obvious improvements in recognizing and discriminating different
pests and diseases: 1) synchronism, 2) precision, and 3) efficiency.
Furthermore, this procedure even suitable for ‘‘high-dimensionali
ty” problem (in observation space), because our findings are more
decided by the explicitly pathological foundation of the specific
disease and by the ‘‘kernel” mapping strategy that turns the
high-dimensional original observation into low-dimensional fea-
ture subspaces However, further investigation about the interac-
tions of each infestation maybe necessary to explain the
difficulties in early detection of characteristic symptoms and fur-
ther improve the classification accuracy of this model. On the other
hand, it can be anticipated that robust hyperspectral imaging sen-
sors based on the pixel-wise attribution of destructive tissue may
provide better circumstances for practical use.
5. Conclusion

In this study, our results showed that the proposed SVIKDA
algorithm has successfully been applied to detecting and identify-
ing the dynamic development of yellow rust, aphids, and powdery
mildew at different stages. This approach linked hyperspectral data
at the leaf and canopy levels with ground measured winter wheat
infestation information. It performed well at three typical occur-
rence levels of diseases and pests. Three advantages of this method
were proved over traditional hyperspectral analysis procedures for
detecting pest and disease: 1) it reduced the redundancy informa-
tion among numerous bands by extracting the most sensitive SVIs
for different infestations. 2) it required fewer samples for training
and calculating, and 3) it had a flexible framework with modifiable
characteristic SVIs. These advantages supported the potential of
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this method to be used in other plant- pathogen systems, and facil-
itated the early detection and identification of pests and diseases at
the leaf- and canopy- level or larger scales.
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