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Abstract—Growing numbers of studies have focused on evalu-
ating the ability of vegetation indices (VIs) to predict biophysical
parameters such as leaf area index (LAI) and chlorophyll. In this
study, empirical models were used to estimate winter wheat LAI
based on three spectral indices [the normalized difference veg-
etation index (NDVI), the modified simple ratio index (MSR),
and the modified soil-adjusted vegetation index (MSAVI)], and
three band-selection approaches (the conventional approach, the
red edge approach, and the best correlated approach), which
were used to calculate VIs. The aim was to enhance the rela-
tionships between the indices and LAI values by improving the
band-selection approaches so as to produce a suitable VI for win-
ter wheat LAI estimation. Using hyperspectral airborne data and
ground-measured spectra as well as ground LAI measurements
collected during two field campaigns, winter wheat LAIs were esti-
mated and validated using different VIs calculated by different
band combinations. Our results showed that the MSAVI provided
the best LAI estimations when using ground measured spectra
with R2 over 0.74 and RMSE less than 0.98. The NDVI provided
the most robust estimation results across different sites, years,
and sensors, although it was not adequate for LAI estimation of
moderately dense canopies due to the saturation that occurred
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when LAI > 3. The MSR demonstrated more severe scattering
and lower predictive accuracy than the NDVI and, therefore, was
not a perfect solution to the saturation issue. In addition, it was
also shown that the best correlated approach improved the pre-
dictive power of the indices and revealed the importance of red
edge bands for LAI estimation; meanwhile, the red edge approach
(based on the reflectance at 705 and 750 nm) was not always supe-
rior to the conventional approach (based on the reflectance at 670
and 800 nm). The results were promising and should facilitate the
use of VIs in crop LAI measurements.

Index Terms—Hyperspectral, leaf area index (LAI), precision
agriculture, spectral indices, winter wheat.

I. INTRODUCTION

T HE LEAF area index (LAI) is a major canopy biophysical
parameter that can be used in the study of physiolog-

ical processes in vegetation and ecosystem functioning [1].
Assessment of crop LAI and its spatial distribution in agricul-
tural landscapes is important such as in crop growth monitoring,
crop yield estimation, crop disease monitoring and forecasting,
vegetation stress monitoring, and also in deciding on suitable
management practices [2]. The analysis of ground imaging
spectrometry allows the identification of spectrum features
which can provide a quantitative estimate of biochemical and
biophysical variables related to the physiological state of the
crop vegetation [3], whereas airborne/satellite hyperspectral
remote sensing provides a quick and large-scale approach to the
estimation of crop LAI and this has led to the development of
various methodologies for LAI estimation at diverse scales and
for different types of vegetation canopies [4]. Generally, there
are two common types of remote sensing methods that can be
used for LAI estimation. The first type is the statistical method,
which draws on a regression analysis expression obtained from
the relationship between the spectral reflectance at the crop
canopy level and the ground-measured LAI [5]–[7]. The other
type uses an inverted radiative transfer model that includes the
spectral reflectance at the crop canopy level [8], [9]. Due in part
to their simplicity and transparency, vegetation indices (VIs) are
among the most widely used satellite products, providing key
measurements of LAI for studies of productivity, phenology,
biochemistry, climate, and hydrology [10]–[13]. Hyperspectral
indices evaluation can both reduce the data dimensionality and
help understanding and evaluating the vegetation status (i.e.,
health or stress status) [14]. The combination of suitable indices
allows the removal of redundant bands by the selection of
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optimal bands that capture only the optical plant/vegetation
characteristics [15]. Therefore, the retrieval of suitable spectral
VIs implies a rigorous study and also a statistical approach used
both for estimating vegetation biophysical characteristics by
remotely sensed data. Otherwise, a physical approach involv-
ing radiative transfer models describing the variation of canopy
reflectance as a function of canopy, leaf, and background char-
acteristics is commonly used [16]. For this study, regression
expression based on VIs was applied for LAI monitoring in
a selected test site, since it was more consolidated and was
then more appropriate for testing the hyperspectral imaging
platform. The indices investigated in this study include the nor-
malized difference vegetation index (NDVI) [17], the modified
simple ratio index (MSR) [18], and the modified soil-adjusted
vegetation index (MSAVI) [19]. Although these indices are
closely related to the LAI, regression equations derived from
the relationship between a given VI and the measured LAI in a
given year cannot necessarily be applied to other years. Because
a VI value includes not only information about the LAI, but
also information about the canopy structure, the coverage of the
crop being investigated and other parameters [2], [20]. In other
words, even if the same crop is cultivated at the same sites in
different years, the potential of a particular VI for LAI estima-
tion might change if the cultivation conditions are different or
the reflectance data source is different (e.g., satellite, airborne
remote sensing or ground-based data source). Furthermore, the
major limitation of VIs, especially the NDVI based on the red
and near infrared (NIR) portion of the spectrum, is that they
asymptotically saturate above a certain biomass density or LAI
value [21]. Hyperspectral remote sensing technology provides
the possibility of investigating indices based on narrow bands
across the whole spectrum, rather than the red and NIR bands
only [22]. Studies have shown that the wavelengths 705 and
750 nm, which are located in the red edge, can alleviate the
problem of the saturation of VIs above a certain value of the
LAI [23], and that narrow band VIs can overcome the saturation
problem in biomass estimation by seeking the most correlated
band combination to characterize the indices [22]. In this study,
we evaluated three band-selection approaches: 1) the conven-
tional approach (based on the reflectance at 670 and 800 nm);
2) the red edge approach (based on the reflectance at 705 and
750 nm); and 3) the best correlated approach (which selects the
band combination that makes the VI most correlated with LAI
through band-by-band computation).

In this context, the main purpose of this paper is to suggest a
simple and accurate spectral index that is suitable for winter
wheat LAI estimation. Empirical regression models for esti-
mating winter wheat LAI using the aforementioned VIs were
compared at a regional scale to achieve the following objec-
tives: 1) to use hyperspectral and ground measured spectra to
establish relationships between LAI measurements collected
over fields and selected spectral indices; 2) to improve the
indices’ prediction capability by using different band-selection
approaches; and 3) to validate the potential of these indices
for LAI predictions and also to assess the influence of band-
selection approaches on the accuracy of predictions based on
the indices.

II. MATERIALS AND METHODS

A. Study Area and Data

The study area was located at the National Experiment
Station for Precision Agriculture (40◦10′N, 116◦2′E), Beijing,
China. This station is used for precision agriculture research
and covers an area of 1 667 000 m2. The mean annual rainfall
in the study area is 507.7 mm and the mean annual temper-
ate is 13.8 ◦C [23]. Winter wheat is one of the most important
crops in China [24], [25], and is sown at this station almost
every year specifically with the aim of performing precision
agriculture research on this important crop. For this study, we
used the field measurements conducted during two field cam-
paigns on the winter wheat crops occurring in this area. In the
first campaign, carried out during the 2002 winter wheat grow-
ing season, we collected airborne hyperspectral data and LAI
ground measurements; while in the second campaign, we mea-
sured ground spectra and the corresponding LAI values during
the 2014 winter wheat growing season. Using spectra collected
in different years with different methods (airborne measure-
ments in 2002 and ground-based measurements in 2014), a
comprehensive analysis of the predictive ability of the indices
was made.

1) Hyperspectral Spectra and Corresponding LAI
Measurements: In the 2002 campaign, winter wheat was
cultivated within 48 fields, each of size 32.4 m × 30.0 m.
Three flights were performed over the test site, respectively,
on April 18, May 17, and May 31, during which hyperspectral
images were acquired by a pushbroom hyperspectral imager
(PHI). PHI is an array-pushing imaging spectrometer with
a spectral resolution less than 5 nm, spanning wavelengths
of 405–835 nm and 126 bands [26], [27]. The flying heights
varied between 1000 and 1200 m and the flight path covered the
whole experimental station, meanwhile the spatial resolution
of the corrected PHI images was 1 m. Radiometric correction
was performed using the band-by-band moment matching
method and the empirical linear method was used to retrieve
reflectance from digital number (DN) of the images. The
images were then geometrically corrected using ground control
points. Afterward, the Savitzky–Golay filtering was performed
using ENVI software to further improve the quality of PHI
images [28].

Winter wheat leaves were sampled and recorded at three
times corresponding to the flight tests. In each field, the sam-
pling was performed within a 1 m × 1 m plot and the location
of the plot was recorded using GPS equipment (Trimble DSM
232 DGPS) with accuracy of 0.2 m. The leaf areas of winter
wheat were then measured in the laboratory to work out the
LAI. Four invalid samples collected on May 31, 2002 were
omitted because their LAI values were zero; the final dataset,
therefore, consisted of 140 samples (a total of 48× 3 = 144
minus the four samples that were omitted). As the GPS mea-
surements allowed us to locate an LAI sampling plot in the PHI
images, we extracted corresponding image spectra of the plots
to conduct modeling analyses between the PHI spectra and the
measured LAIs. Three images acquired during the 2002 flights
are shown in Fig. 1: the 48 ground-measured plots are marked
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Fig. 1. PHI images acquired during the 2002 flights. From left to right: the
images acquired on April 18, May 17, and May 31.

by white crosses and the area covered by the plots is outlined
by red rectangles.

2) Ground Spectra and Corresponding LAI Measurements:
In the 2014 campaign, winter wheat was cultivated within 13
fields, each of size 7.0m × 7.5m. Four replicated measure-
ments of ground spectra and LAI were made—one each on
April 14, April 23, May 5, and May 28. Canopy radiance
data were measured using a portable field spectroradiometer
(FieldSpec-FR2500, ASD, USA) at a distance of about 130 cm
above the ground surface by maintaining the same viewing
geometry (nadir view) to minimize directional effects result-
ing from properties of the target with a directional set-up. The
canopy radiances were acquired between 350 and 2500 nm
using an integration time of 50 ms and a spectral resolu-
tion of 1 nm and then converted into absolute reflectance by
using a NIST calibrated panel (Spectralon—Sphere Optics Inc.,
Durham, NH, USA) to derive absolute reflectance spectra. Ten
spectra for each wheat plot were collected and then averaged
for more accurate analysis. Winter wheat LAI measurements
in 2014 were conducted in the same way as for the 2002
campaign.

B. Vegetation Indices

The aim of this study was to find indices that can be used
to estimate winter wheat LAI and to improve the accuracy
of estimates using these indices. There were two main prob-
lems: 1) the selection of the VIs and 2) the selection of the
bands to calculate the indices. Regarding band selection, some
studies suggested that only a limited number of bands are nec-
essary for canopy variables estimation [29], [30]. According to
Darvishzadeh et al. [31], the full hyperspectral resolution is not
automatically more advantageous than a carefully multispectral
band selection for canopy variables estimation. Redundancy of
spectral data and uncertainties attached to reflectance measure-
ments with high noise levels in some hyperspectral bands may
degrade the retrieval process [32].

In this study, we used the NDVI, the MSR, and the MSAVI to
estimate LAI. The NDVI is the most used VI and was developed
by Rouse et al. [17]. It has been widely accepted by researchers
as a benchmark for comparing alternative inversion algorithms.

Despite the intensive use of NDVI, differences in LAI for
LAI > 3 cannot be resolved using NDVI values [33]. There
are more effective hyperspectral vegetation indices (HVIs) that
can be candidates for developing LAI estimation methods [34].
For example, there is a relatively full list of HVIs that can be
used to estimate plant LAI from Table II in the study of Gong
et al. [35] and Table 5.2 in the study of Ruiliang and Peng [36].
Some of the indices were developed due to the saturation prob-
lem of NDVI (such as MSR, SR, and EVI), while the others
were aimed at resisting to the environmental factors (such as
MSAVI, SAVI, and TSAVI). It was not practical to exhaust all
these VIs in this study of winter wheat LAI estimation from
ground and hyperspectral observations, therefore, besides the
benchmark index NDVI, the MSR was chosen as a represen-
tative of the indices with the ability to alleviate the saturation
problem [18], and MSAVI was chosen as a representative of
the indices with insensitivity to soil effects on the canopy spec-
tra [19]. Table I lists all three VIs together with their definitions
and references to the relevant papers.

Three band-selection approaches were used to formulate VIs
in this study: the conventional approach and the best corre-
lated approach. Vegetation reflectance at 670 nm corresponds
to the maximum absorption of the red band and the reflectance
at 800 nm corresponds to the maximum reflection region of the
NIR band [4]. Therefore, the conventional algorithm uses the
reflectance at 670 and 800 nm to calculate VIs. Chaoyang et al.
have shown that the use of the wavelengths 705 and 750 nm,
which are located within the red edge, could alleviate the sat-
uration of VIs with increasing LAI [23]. In response to this,
the first improved approach we investigated was the red edge
approach, which used the reflectance values at 705 and 750 nm
to form the revised indices instead of 670 and 800 nm. The
second improved approach (the best correlated approach) was
specifically designed for narrow-band hyperspectral data [22].
With the best correlated approach, we used every possible com-
bination of bands to find the highest correlation between the VIs
and the LAI; subsequently, we used the indices with the high-
est correlation to formulate regression equations between VIs
and LAI. Indeed, the calculation of coefficients in the MSAVI
formula (Table I) is closely related to the red and NIR bands,
and therefore, in order to follow the principle of MSAVI, we
adopted the wavelength range 600–800 nm to perform band-
by-band calculations with the best correlated approach instead
of the whole spectrum of hyperspectral and ground-measured
reflectance.

C. Validation Scheme

In order to make a thorough analysis of the dataset, we
made three groups of tests and built estimation models by using
the 2002 dataset, the 2014 dataset, and the 2002–2014 pooled
dataset, respectively.

A k-fold cross-validation procedure was used to evaluate the
performance of the estimation models [27]. The entire dataset
was divided into k mutually exclusive groups following a k-fold
cross-validation partitioning design. In our case, the dataset was
split randomly and evenly into four (k = 4) sets, and the LAI
values for each quarter of the dataset were estimated by models
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TABLE I
DEFINITIONS AND FORMULAS OF VIS INVESTIGATED IN THIS STUDY

built using VIs and the LAI values of the remaining samples.
The dataset from the 2002 campaign consisted of 140 samples;
each sample with VIs is calculated from the PHI hyperspectral
reflectance and corresponding ground-measured LAI data. For
each type of VI, 105 samples were used to build the calibra-
tion model. The equation was then inverted to estimate the LAI
of the remaining 35 samples, while the ground-measured LAI
values of these 35 samples were used to validate the estimation
results. For estimations of the LAI using one particular type
of VI, we developed four individual models, each using one
quarter of the total dataset (in rotation) as validation data. Note
that each estimation model built with different types of VIs and
different band-selection approaches used the same k-fold parti-
tions; this allowed us to make comparisons between the LAIs
estimated using different VIs and to evaluate the influence of
the different band-selection approaches on the VIs. The 2014
campaign dataset consisted of 52 samples, each with ground-
measured reflectance and LAI data. As for the 2002 dataset, the
same cross-validation procedure was carried out for the 2014
dataset and 2002–2014 pooled dataset.

This type of validation reduced the dependence on a sin-
gle random partition into validation datasets. It also guaranteed
that all samples were used for both training and validation with
each sample used for validation exactly once. Values of the
coefficient of determination (R2) and root-mean-square error
(RMSE) were selected as indicators of the accuracy of the
statistical models.

III. RESULTS AND DISCUSSION

A. Relationships Between VIs and LAI

As mentioned in Section II-B, the conventional approach
imposes the reflectance at 670 and 800 nm to calculate VIs,
and the first improved approach (the red edge approach) uses
the reflectance at 705 and 750 nm instead; while the sec-
ond improved approach (the best correlated approach) uses
the NDVI, MSR, and MSAVI formulae with every possible
band combination. Correlation coefficients between the LAI
and these indices are mapped in Fig. 2. These maps were
used to decide the best correlated bands for each index. In
the case of the 2002 experiment, the hyperspectral reflectance
band pair used in the NDVI, MSR, and MSAVI formulae
was (700, 724 nm). For the 2014 experiment, the bands used
for the ground-measured reflectance in the NDVI, MSR and
MSAVI formulae were, respectively, (611, 639 nm), (611,

639 nm), and (735, 736 nm); Whereas, in the 2002–2014
pooled case, the bands selected to calculate NDVI, MSR, and
MSAVI were, respectively, (708, 724 nm), (708, 724 nm),
and (714, 772 nm). Although the first ranked best correlated
bands for NDVI and MSR in the 2014 case centered at (611,
639 nm) and the first ranked best correlated bands for MSAVI in
2002–2014 pooled case centered at (714, 772 nm), we caution
that, the three indices yielded significant correlation coefficient
based on many band combinations within the red edge region
(700–750 nm), which was clearly demonstrated in Fig. 2.

Once the band selection using the best correlated approach
was completed, the three investigated VIs were calculated using
the conventional approach, the red edge approach, and the best
correlated approach. Empirical regression models were built
using the LAI and VIs, and the resulting equations are pre-
sented in Table II. The relationships between LAI and the VIs
exhibited a considerable scatter, with the values of R2 rang-
ing from 0.4807 (for NDVI based on the conventional approach
in the 2014 experiment) to 0.8673 (for MSAVI based on the
best correlated approach in the 2014 experiment). This scatter
was mainly caused by the chlorophyll content variation and the
effects of other canopy characteristics. In fact, these indices are
designed to measure vegetation greenness, in which chlorophyll
content as well as the amount of green leaves plays a crucial
role [4].

From the perspective of the band-selection approach, the
best correlated approach (which chooses the most highly cor-
related bands through band-by-band computation) best related
the VIs to the LAI in both experiments. Our results for the
2002 experiment showed that the conventional approach (using
the wavelengths 670 and 800 nm) better captured the relation-
ship between VIs and LAI than the red edge approach (using
the wavelengths 705 and 750 nm). Conversely, in the 2014
experiment, the red edge approach outperformed the conven-
tional approach. These two approaches performed similar to the
2002–2014 pooled experiment.

From the perspective of the VI type, the three indices showed
comparable sensitivity to the LAI when the same approach was
used with the 2002 data and 2002–2014 pooled data. In the case
of the 2014 experiment, the MSAVI gave the best fit for each
approach—this contrasted with the indices derived from simu-
lated data using PROSPECT and SAILH, among which MSR
showed higher sensitivity to LAI than MSAVI and NDVI [4].
It can be explained by considering that the ground-measured
spectra were influenced by the soil whereas the PROSPECT
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Fig. 2. Maps showing the correlation coefficients between LAI and VIs based on the NDVI, MSR, and MSAVI formulae. VIs were calculated using all possible
band combinations spread across Band 1 (600–800 nm) and Band 2 (600–800 nm).

TABLE II
STATISTICAL ANALYSIS OF THE RELATIONSHIP BETWEEN LAI AND VIS

*“x” refers to LAI and “y” refers to VI; VIs are denoted by name and band wavelengths (in nm): e.g., NDVI (670, 800) indicates the NDVI calculated
using reflectance at 670 and 800 nm.

and SAILH simulated spectra were not. This may have led
to MSAVI being the most sensitive index to LAI in the 2014
experiment.

B. Comparing the LAI Estimation Performance of the Indices

Predictive equations were derived from the statistical rela-
tionships between the spectral indices (NDVI, MSR, and

MSAVI) using hyperspectral and ground-measured spectra as
well as ground-measured winter wheat LAI. The predictive
equations were applied to PHI images and ASD spectra col-
lected at different dates during the winter wheat growing
season to represent the early vegetative, active, and reproductive
growth stages. Estimation results were assessed using ground
truth LAIs following the k-fold cross-validation procedure
mentioned above.



776 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 2, FEBRUARY 2016

Fig. 3. Comparison between measured LAI and LAI estimated from PHI images of winter wheat from the 2002 campaign using predictive equations determined
from NDVI, MSR, and MSAVI using three different approaches. VIs are denoted by name and band wavelengths (in nm): e.g., NDVI (670, 800) indicates the
NDVI calculated using reflectance at 670 and 800 nm.

Fig. 4. Comparison between measured LAI and LAI estimated from ground-measured data of winter wheat from the 2014 campaign using predictive equations
determined from NDVI, MSR, and MSAVI using three different approaches. VIs are denoted by name and band wavelengths (in nm): for example, NDVI (670,
800) indicates the NDVI calculated using reflectance at 670 and 800 nm.

In Fig. 3, values of LAI estimated using PHI spectra are plot-
ted against field LAI measurements from the 2002 campaign.
Fig. 4 compares LAI estimates derived from ground-measured
spectra and LAI measurements collected during the 2014 cam-
paign. The 2002–2014 pooled estimation results against in situ
LAI measurements are shown Fig. 5. Table III lists the RMSE
between the estimated and measured LAI values of each esti-
mation model. In Figs. 3–5, VIs are denoted by their names
and band wavelengths (nm): for example, NDVI (670, 800)

indicates the VI calculated using reflectance at 670 and 800 nm
with the NDVI formula. To note that, indices based on the red
edge approach and the best correlated approach did not strictly
follow the formulae listed in Table I because bands at the red
edge or other wavelengths were used to replace ρnir and ρred.
In general, Figs. 3–5 showed that there was a very good agree-
ment between the predicted LAI values and the ground truth
values. For the 2002 experiment, the coefficient of determina-
tion (R2) ranged from 0.6720 to 0.7623 with an RMSE less than
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Fig. 5. Comparison between measured LAI and LAI estimated from the 2002–2014 pooled data using predictive equations determined from NDVI, MSR, and
MSAVI using three different approaches. VIs are denoted by name and band wavelengths (in nm): i.e., NDVI (670, 800) indicates the NDVI calculated using
reflectance at 670 and 800 nm.

TABLE III
RMSE BETWEEN ESTIMATED LAI AND MEASURED LAI

0.6305. For the 2014 case, R2 ranged from 0.5003 to 0.7422
with an RMSE less than 1.1245; whereas, for the 2002–2014
pooled experiment, R2 ranged from 0.5569 to 0.7052 with an
RMSE less than 0.8832. The results revealed significant differ-
ences in the behavior of the indices and in the superiority of the
band-selection approaches.

The influence of the band-selection approaches is well
illustrated by comparing graphs within the same columns in
Figs. 3–5. The best correlated approach (the band-by-band
selection approach) improved the predictive ability of HVIs,
generating the highest R2 and the lowest RMSE among the
three approaches in 2002, 2014, and 2002–2014 pooled tests.
The indices calculated using the red edge approach (705 and
750 nm) outperformed those calculated using the conventional
approach (670 and 800 nm) in the 2014 test, but in the 2002 test,
the red edge approach did not produce a significant improve-
ment compared to the conventional approach. In order to further
compare the conventional approach and the red edge approach,
we made a statistical study to count the proportion of the 2002
and 2014 datasets for which LAI > 3 and to determine the range

TABLE IV
PROPORTION OF SAMPLES WITH LAI > 3 AND RANGE OF LAI VALUES

FOR THE 2002 AND 2014 DATASETS

of LAI values in these datasets (Table IV). Given that in VI–LAI
regression models, indices tend to saturate when the value of
the LAI is greater than 3, we took 3 as the threshold value when
determining the LAI > 3 proportion. Table IV showed that com-
pared to 2002, the range of LAI values in 2014 was wider
and the proportion of samples for which LAI > 3 was larger.
This leads to a deduction: the red edge approach alleviates the
saturation problem over intermediate-to-high density canopies
(where LAI > 3), but the conventional approach better captures
the correlation between indices and LAI over sparse canopies
(LAI < 3). This was consistent with the results of the study by
Wu et al., which showed that in VI–LAI models, VIs calculated
using the (670, 800 nm) wavelengths better responded to low-
to-intermediate LAI values than those calculated using (705,
750 nm), on the other hand, the (705, 750 nm) band pair reduces
saturation for intermediate-to-high values of LAI [23]. It can be
explained by the influence of chlorophyll content according to
the study of Haboudane et al. [4]: the integration of bands in
the conventional approach (670, 800 nm) are highly correlated
to leaf and canopy chlorophyll content and easy to be hindered
at high levels of canopy chlorophyll content. As the canopy
chlorophyll content was higher in the case of 2014 than in 2002,
consequently, the conventional approach was outperformed by
the red edge approach in the case of 2014.
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Comparison between the graphs in the same rows in
Figs. 3–5 revealed discrepancies of the three indices tested in
this paper. As shown in Fig. 3, in 2002 results, all the indices
followed the one-to-one line all along. These results were quite
different from those in the 2014 test: as can be seen from
Fig. 4, the three indices behaved in two distinct ways. During
the early vegetative stage, the MSAVI closely followed the
one-to-one line while the NDVI and MSR overestimated the
wheat canopy LAI; during the active growth and reproductive
periods, the MSAVI followed the one-to-one line less closely
while the NDVI and MSR underestimated the wheat canopy
LAI. Regards 2002–2014 pooled results, Fig. 5 showed that,
when using the same VI and the same band-selection approach,
the models gave medium accuracy between the 2002 and 2014
results.

Consequently, from the analysis of the R2 and RMSE values,
MSR demonstrated medium LAI predictive power in the 2002,
2014, and 2002–2014 pooled tests compared to the other two
indices when using the same approach, because the MSR was
the most affected by chlorophyll variability among the three
indices tested. It is true that the MSR is meant to improve the
linearity and overcome the saturation limits, but only at high
levels of canopy chlorophyll content. Thus, MSR is more appli-
cable to forestry than to agriculture, which is consistent with the
study of Haboudane et al. [4]. The NDVI and MSAVI are resis-
tant to chlorophyll content variability, and they showed similar
behaviors when using the same approach in the 2002 test, but in
the 2014 test, the latter outperformed the former having higher
accuracy and being better able to solve the underestimation and
overestimation problems. The different data sources led to dif-
ferences in the estimation behavior of NDVI and MSAVI: in
the case of 2002 based on PHI hyperspectral spectra, the three
indices showed comparable predictive power, while in the case
of 2014 based on ground-measured spectra, MSAVI showed a
significant advantage over NDVI. This was due to the influence
of the soil factor, which affects ground observations more than
airborne observations, explaining the excellent results produced
by the MSAVI using the 2014 data. Regarding the 2002–2014
pooled test, however, as shown in Fig. 5, NDVI provided robust
estimation accuracies based on every band-selection approach
(R2 ranged from 0.6321 to 0.6911), while MSAVI behaved dif-
ferently when band-selection approach varied (R2 ranged from
0.5569 to 0.7052).

The result that the MSAVI was the best index to estimate LAI
values obtained for the 2014 test was consistent with the results
of Broge’s study [19], but the result that the MSAVI as well
as the NDVI and MSR underestimated the LAI when the LAI
exceeds 3 contrasted with the predictive equations derived from
simulated data using PROSPECT and SAILH [4]. Indeed, we
noticed that using the same indices (NDVI, MSR, and MSAVI),
approaches based on ground and airborne measurements had
a tendency to underestimate the LAI, while approaches based
on simulated data tended to overestimate the LAI. Overall,
our results for the 2 years of measurements demonstrate
that the equations relating the investigated indices to winter
wheat canopy reflectance are reasonable. In all the three cases
(2002, 2014, and 2002–2014 pooled case), the best predic-
tion was produced by the MSAVI based on the best correlated
approach.

IV. CONCLUSION

In this paper, we have studied winter wheat LAI estima-
tion based on the use of predictive equations derived from
airborne and ground measurements made over winter wheat
canopies. Three indices (NDVI, MSR, and MSAVI) and three
band-selection approaches (the conventional approach, the red
edge approach, and the best correlated approach) were applied
to hyperspectral and ground-measured spectra as well as ground
LAI measurements. The aim was to investigate the relative
ability of band-selection approaches and hyperspectral VIs on
estimating winter wheat LAI.

Our study shows that hyperspectral VIs had different pre-
dictive behaviors when calculated with different data sources:
NDVI gave the most robust LAI estimation across different
sites, years and sensors, but it was not suitable for estimat-
ing the LAI of intermediate-to-dense canopies as it exhibited
a clear saturation when LAI > 3; MSAVI was superior when
using ground-measured spectra, which were more influenced
by the soil compared with hyperspectral spectra, as it gave
the best solution to the underestimation problem for low-to-
intermediate LAI values and to the overestimation problem for
intermediate-to-high LAI values, especially when applied to the
2014 case; MSR performed moderately among the three indices
in each case, thus it was not a perfect solution to the saturation
problem as it demonstrated more severe scattering and lower
predictive accuracy than the NDVI on canopies that were not
dense enough. In addition, the results reported in this paper
prove that VIs calculated using the red edge approach (705,
750 nm) was not necessarily better correlated with LAI than
those calculated using the conventional approach (670 800 nm),
because the former was more sensitive to dense canopies
with high chlorophyll content level, while the latter was more
responsive to sparse canopies. During the winter wheat grow-
ing season, the LAI normally ranges from 0 to 7, meaning that
sparse and dense canopies are of the same importance. The
best correlated approach explained about 10% greater accu-
racy than the conventional approach and the red edge approach,
significantly improved the predictive power of VIs by work-
ing out which bands were the most correlated with LAI values.
Meanwhile, through band-by-band calculation, the best corre-
lated approach revealed the significant correlation between the
LAI and VIs based on bands within the red edge region. To sum
up, one index is not necessarily suitable for use in all LAI pre-
dictions. Future work should consider the relative importance
of saturation, chlorophyll variability, and environmental factors
such as soil, atmosphere, and background when establishing
LAI estimation functions using VIs. These results support the
use of MSAVI and NDVI based on red edge region to estimate
winter wheat LAI, establishing a step toward improved use of
hyperspectral and ground-measured data for predicting values
of the LAI at the regional scale.
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