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Abstract The aim of this study was to evaluate the accuracy of the spectro-optical,

photochemical reflectance index (PRI) for quantifying the disease index (DI) of yellow rust

(Biotroph Puccinia striiformis) in wheat (Triticum aestivum L.), and its applicability in the

detection of the disease using hyperspectral imagery. Over two successive seasons, canopy

reflectance spectra and disease index (DI) were measured five times during the growth of

wheat plants (3 varieties) infected with varying amounts of yellow rust. Airborne hyper-

spectral images of the field site were also acquired in the second season. The PRI exhibited

a significant, negative, linear, relationship with DI in the first season (r2 = 0.91, n = 64),

which was insensitive to both variety and stage of crop development from Zadoks stage

3–9. Application of the PRI regression equation to measured spectral data in the second

season yielded a coefficient of determination of r2 = 0.97 (n = 80). Application of the

same PRI regression equation to airborne hyperspectral imagery in the second season also

yielded a coefficient of determination of DI of r2 = 0.91 (n = 120). The results show

clearly the potential of PRI for quantifying yellow rust levels in winter wheat, and as the

basis for developing a proximal, or airborne/spaceborne imaging sensor of yellow rust in

fields of winter wheat.
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Introduction

Winter wheat (Triticum aestivum L.) is one of the most important crops in China. Yellow

rust (Biotroph Puccinia striiformis) is a fungal disease of this crop that produces leaf

lesions (pustules) that are yellow in color and tend to be grouped in patches. Yellow rust

often occurs in narrow stripes, 2–3 mm wide that run parallel to the leaf veins. Multiple

golden-yellow colored rust pustules, each the size of a pencil dot (&200 lm · 150 lm)

are formed in the chlorotic areas. Yellow rust is responsible for approximately 73–85% of

recorded yield losses, and grain quality is also significantly reduced (Li et al. 1989).

Consequently, forecasting the incidence of this disease and the subsequent use of this

information to facilitate timely avoidance strategies are critical to enhancing the viability

of China’s wheat production industry. Pesticides are a key management strategy. However,

excessive use of pesticides for plant disease treatment increases costs and raises the danger

of toxic residue levels in agricultural products. Disease control could be more efficient if

disease patches within fields could be identified and spray applied only to the infected

areas. Recent developments in optical sensor technology have the potential to enable direct

detection of foliar disease under field conditions (West et al. 2003).

The interaction of electromagnetic radiation with plants varies with the wavelength of

the radiation. The same plant leaves will exhibit significant differences in the way they

reflect light depending on the level of health and or vigor (Knippling 1970; Wooley 1971;

West et al. 2003). Healthy, vigorously growing plant leaves will generally have

(i) low reflectance at visible wavelengths (400–700 nm) owing to strong absorption by

photoactive pigments (chlorophylls, anthocyanins, carotenoids);

(ii) high reflectance in the near infrared (700–1,200 nm) because of multiple scattering at

the air-cell interfaces in the leaf’s internal tissue; and

(iii) low reflectance in wide wavebands in the short-wave infrared (1,200–2,400 nm)

because of absorption by water, proteins, and other carbon constituents.

Remote sensing of crop plant vigour has generally focused on the link between plant

pigments, especially chlorophylls, and biomass; the combination of which is collectively

referred to as photosynthetically active biomass-PAB (Hall et al. 2002). During the past

36 years there has been much literature generated on this type of work (for example

Knippling 1970; Thomas and Gausman 1977; Everitt et al. 1985; Bonham-Carter 1987;

Buschmann and Nagel 1993; Filella and Peñuelas 1994; Blackmer et al. 1996; Lamb et al.

2002, to name a few). Increasingly, developments in the remote sensing of agricultural

crops have been encouraged by the needs of precision agriculture. This is particularly so for

technologies that enable agricultural crops to be managed differentially on the basis of

spatial variation in predicted or actual yield and product quality (for example, Haboudane

et al. 2002; Huang et al. 2004), weed pressure (for example Lamb and Weedon 1998; Lamb

et al. 1999; Lamb and Brown 2001), crop nutrition (for example Thomas and Gausman

1977; Filella et al. 1995; Blackmer et al. 1996) and crop plant disease (for example

Lorenzen and Jensen 1989; Rinehart et al. 2002; West et al. 2003; Moshou et al. 2004).
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Crop plant disease often influences transpiration rate, leaf color, morphology, and crop

density therefore detection via remote sensing relies on the same pigment and biomass

detection methods as for nutrient and yield. Many farmers worldwide currently rely on the

visual sensing of optical changes in crop canopies as part of their day-to-day assessment of

disease risk. However such assessments are time-consuming and can be inaccurate (Parker

et al. 1995). The use of optical reflectance measurements and spectral indices appropriate

for on-ground or overhead sensors offers several advantages over conventional visual

appraisal methodologies. This includes the use of wavebands beyond the limit of human

sensitivity, the ability to detect symptoms early (if pre-visual symptoms exist), and most

importantly, the ability to co-analyze complex relationships between several properties.

Reflectance at 700 nm (red wavelength) and, more significantly, the ratio between

reflectance at 700 nm and at 550 nm (green wavelength), is highly correlated with total

leaf chlorophyll content (Gitelson et al. 1996). The use of near infrared (NIR) wavelengths

(*750–2,500 nm) dates back to the 1930s when Bawden (1933) studied plant virus dis-

eases by infrared photography. More recently, researchers have investigated the link

between chlorophyll-related wavebands and crop plant diseases. For example, Sharp et al.

(1985) researched the monitoring of cereal rust development with a spectral radiometer.

Changes in leaf spectral properties induced in barley leaves by cereal powdery mildew

were studied by Lorenzen et al. (1989). Hansen (1991) used multi-spectral radiometry to

quantify yellow rust in wheat and Adams et al. (1999) introduced a yellowness index (YI)

as a measure of chlorosis in leaves of stressed plants. Sasaki et al. (1999) were able to

distinguish diseased cucumber leaves from healthy leaves at an early stage of infection,

based upon the spectral reflectance of the leaves in the 500, 600, and 650 nm wavebands.

In this work the disease classification error was only 10%. Rinehart (2002) investigated the

relationship between canopy spectral reflectance and the severity of stripe patch and dollar

spot (Sclerotinia homeocarpa) caused by diseases on creeping bentgrass. Moshou et al.
(2004) studied the automatic detection of wheat yellow rust by in-situ reflectance mea-

surements, and disease detection algorithms based on neural networks were developed. The

research described above points clearly to the potential of spectral reflectance measure-

ments for quantifying the incidence or severity of crop plant diseases, and some

specifically related to rust in wheat. However, none of this research has evaluated the

application of derived predictors of disease incidence to subsequent seasons, nor have they

been applied to airborne hyperspectral remote sensing.

In this study, in-situ spectral reflectance measurements of crop plants infected with

yellow rust were used to develop a regression equation to characterize the disease index.

This was validated in the subsequent growing season, and then be applied to hyperspectral

airborne imagery to discriminate and map the disease index in target fields.

Materials and methods

Experimental design and field conditions

The experiment was conducted at Beijing Xiaotangshan Precision Agriculture Experi-

mental Base, in Changping district, Beijing (40�10.60 N, 116�26.30 E) for the 2001–2002

and 2002–2003 growing seasons. Experimental data from 2001 to 2002 were used to

establish the statistical models, and the data for 2002–2003 were used to validate the

models developed.
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The field site has a warm temperate climate, with a mean annual rainfall of 507.7 mm

and a mean annual temperate of 13�C. In this region a significant proportion of growing

days are cloudless during April to June. The soil at the sites is a silt-clay loam. The average

topsoil nutrient status (0–0.30 m depth) was as follows: organic matter 1.42–1.48%, total

nitrogen 0.08–0.10%, alkali-hydrolysis nitrogen 58.6–68.0 mg kg–1, available phosphorus

20.1–55.4 mg kg–1, and rapidly available potassium 117.6–129.1 mg kg–1.

The crop at the field site was winter wheat (Triticum aestivum L.) and three cultivars of

wheat were planted; ‘Jing 411’ on 2.4 ha, ‘98–100’ on 1.2 ha and ‘Xuezao’ on 1.2 ha. Jing

411 has a strong resistance to yellow rust, 98–100 has moderate resistance and Xuezao is

susceptible to it.

Inoculation and assessment of disease index

Yellow rust (Biotroph Puccinia striiformis) was inoculated by spore inoculation according

to the National Plant Protection Standard (Li et al. 1989) on April 1 2002 and April 4 2003,

both times coincide with the ‘erecting’ stage of plant development (approximately Zadoks

stage 25) (Zadoks et al. 1974). A visual inspection of disease severity was done at 5–7 day

intervals following inoculation with exact intervals selected to include stem elongation

(Zadoks stage 3), heading, anthesis (Zadoks stage 5), grain filling (Zadoks stage 7), milky

maturity (Zadoks stage 8) and wax ripeness (Zadoks stage 9) stages of plant development.

Disease severity was determined as the proportion of a complete leaf covered by yellow

rust spores. On each inspection, the plants were grouped into one of 9 classifications of

disease incidence (x); 0, 1, 10, 20, 30, 45, 60, 80 and 100% covered by rust. Zero percent

represented no incidence of yellow rust and 100% was the greatest incidence. The disease

index (DI) was then calculated using (Li et al.1989):

DI ¼

P8

n¼0

x� fð Þ

n�
P8

n¼0

f

� 100 ð1Þ

where f is the total number of leaves of each degree of disease severity and n is the highest

degree of disease severity observed (in this work, n = 8).

Spectral reflectance measurements

In-situ canopy spectral reflectance measurements were acquired at the same time as the

inspections for DI were carried out. Spectral reflectance measurements were recorded at a

height of 1.6 m above ground by an ASD FieldSpec Pro spectrometer (Analytical Spectral

Devices, Boulder, CO, USA) fitted with a 25� field of view fore-optic. Spectra were

acquired in the 350–2,500 nm spectral region with a sampling interval of 1.4 nm between

350 nm and 1,050 nm, and 2 nm between 1,050 nm and 2,500 nm. Measured irradiance

was converted into reflectance by recording irradiance spectra also from a 0.4 m · 0.4 m

BaSO4 calibration panel. All irradiance measurements were recorded as an average of 20

individual measurements (minus dark current) at an optimized integration time. All

measurements were made under clear blue sky conditions between 10:00 h and 14:00 h

(Beijing Local Time).
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Airborne hyperspectral imaging

Airborne hyperspectral images of the trial field were acquired in 2003 using the Pushbroom

Hyperspectral Imager (PHI) (Shao 1998) designed by the Chinese Academy of Science

(CAS) and flown onboard a Yun-5 aircraft (Shijiazhuang Aircraft Manufacturing Com-

pany, China). The PHI comprises a solid state, area array, silicon CCD device of

780 · 244 elements, has a field of view of 21� and is capable of acquiring images of

1 m · 1 m spatial resolution at an altitude of 1,000 m above ground. It has a wavelength

range of 400–850 nm with a spectral resolution of 5 nm. Images of the target field were

acquired in 2003 at the phenological growth stages of stem elongation (April 18, 2003,

Zadoks stage 3), anthesis (May 17, 2003, Zadoks stage 5) and milky maturity (May 31,

2003, Zadoks stage 8). The inoculated wheat was adequately infected by rust on April 18,

obviously infected by May 17, and seriously infected by May 31. Measurements of DI

were made and in-situ canopy reflectance spectra were also acquired on the same dates. All

images were geometrically and radiometrically corrected using an array of georeferenced

light and dark targets (5 m · 5 m) located at the extremes of the field site. The afore-

mentioned field spectrometer was used to calibrate these targets relative to BaSO4. The

location of each target, as well as any field measurements of DI were recorded using a

differential global positioning system (Trimble Sunnyvale California, USA). A full sum-

mary of field activities is given in Table 1.

Photochemical reflectance index (PRI)

Since foliar pigments are destroyed and foliar physiological activity decreases following

inoculation by the yellow rust epiphyte, the photochemical reflectance index (PRI) (Pe-

ñuelas et al. 1995) was selected as the spectrophotometric method of estimating the disease

index. The PRI was calculated from the acquired reflectance spectra (R) by (Peñuelas et al.

1995)

PRI ¼ R531 � R570ð Þ
R531 þ R570ð Þ

� �

ð2Þ

where, Rx corresponds to the reflectance at specific annotated wavelengths.

Results

The two consecutive growing seasons covered by this study had similar temperatures and

rainfall patterns. Yield ranges for both healthy and rust-affected wheat were also similar, as

Table 1 Summary of field measurement activities for 2001–2002 and 2002–2003

Activity 2001–2002 2002–2003

Planting date September 28 September 30

Inoculation of Rust April 1 April 4

DI measurements 5–7 day intervals (Z3–Z9) 5–7 day intervals (Z3–Z9)

Spectral reflectance
measurements

Coincident with
DI measurements

Coincident with
DI measurements

PHI images acquired – April 18, May 17, May 31
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was the grain protein content. A summary of conditions and yield and quality ranges is

given in Table 2.

PRI versus DI

A plot of the measured DI as a function of PRI for all varieties combined in 2001–2002 is

given in Fig. 1. The data points associated with the variety Xuezao dominate the top left-

hand region of the scatter plot (relatively high range of DI), those associated with the

variety 98–100 are located in the mid region (mid-range DI) and those associated with Jing

411 dominate the lower-right region. This distribution is consistent with the relative sus-

ceptibility of these varieties to rust—Xuezao being the least resistant and Jing 411 having

the greatest resistance. The regression equation of DI using PRI in 2001–2002 was

observed to have the form (n = 64)

DI %ð Þ ¼ �721:22 PRIð Þ þ 2:40 �0:14�PRI� 0:02; r2 ¼ 0:91
� �

ð3Þ

An important feature of Fig. 1, and the associated regression equation (Eq. 3), is that the

spectrally-derived PRI explains 91% of the variance observed in the disease index. This

explanation also encompasses the three varieties of wheat as well as the four stages of crop

development for each variety. This is shown in Fig. 2 where the data from each variety are

plotted individually with growth stage indicated, and the regression line (Eq 3) is also

included. It is evident that the development stage of the varieties does not confound the

discrimination of rust incidence. The displacement of the data along the calibration line,

with increasing crop maturity, is the result of an increase in rust incidence only.

In the subsequent validation of the PRI–DI regression equation with the 2002–2003 data

(Fig. 3), the coefficient of determination (r2) between the estimated and measured values

was 0.97 (n = 80).

In Fig. 3, the locations of data points associated with individual varieties are consistent

with the levels of resistance to rust; Xuezao dominates the top right-hand region of the

scatter plot (relatively high range of DI), the variety 98–100 has points scattered all along

the regression line (predominantly mid-range DI) and Jing 411 is concentrated in the

central lower-left region (lower range DI). The distribution of the individual development

stages for each variety was again consistent with that observed for the previous season in

Fig. 2 (data for 2003 not shown).

Application of multi-temporal PHI images for DI estimation

The DI was estimated, on a pixel-by-pixel basis, in each of the acquired PHI images

using Eqs. 2 and 3. To map the degree of yellow rust infection in the trial field, the DI

Table 2 Summary of climate, crop yield and grain quality in 2001–2002 and 2002–2003 seasons

Activity 2001–2002 2002–2003

Rainfall (planting–harvest) 261.4 mm 228.9 mm

Yield range (healthy wheat, low–high vigour) 6,300–7,650 kg ha–1 6,200–7,320 kg ha–1

Yield range (infected wheat, DI = 100–10%) 750–6,000 kg ha–1 600–6,300 kg ha–1

Grain protein range (%) (healthy wheat) 15.1–16.7 15.4–16.8
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Fig. 2 Plots of measured disease
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Fig. 1 Plot of measured disease index (DI) as a function of measured photochemical reflectance index
(PRI) for all varieties combined in 2001–2; ‘D’ = Jing 411; ‘+’ = Xuezao; ‘h’ = 98–100
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was binned into the following classes; Very Serious (DI [ 80%), Serious

(45% \ DI £ 80%), Mid-range (10% \ DI £ 45%), Low-range (1% \ DI £ 10%) and

None (0 \ DI £ 1%). Classified images of the trial site comprising the three varieties

(98–100 top left quadrant, Xuezao bottom left quadrant and Jing 411 right half of field),

color-coded according to the 5 disease classes are given in Fig. 4. Early in the season

(Stem elongation, Zadoks stage 3, April 18 2003) the more susceptible variety Xuezao

appears to be performing better than the other two, although this is an artifact of higher

biomass levels (tiller numbers) rather than reduced disease incidence. As the growing

season progresses through anthesis (May 17, 2003, Zadoks stage 5) and milky maturity

(May 31, 2003, Zadoks stage 8) the rust develops extensively throughout Xuezao in

comparison to the other two varieties. This can be seen by the large values of DI for the

south western quadrant of the field.

The relationship between the DI calculated from the multi-temporal PHI images and the

actual measured DI from the 120 sample sites located within the field is given in Fig. 5.

The coefficient of determination between the PHI—derived estimates of DI and actual DI

is 0.91 (n = 120).
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Fig. 3 Comparison of measured
DI and PRI-estimated DI for
2002–3; ‘D’ = Jing 411;
‘+’ = Xuezao; ‘h’ = 98–100
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Fig. 4 Classified DI images derived from PHI airborne images of the trial site in 2003. Location of cultivars
as indicated
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Discussion and conclusion

The level of variance explained in the calibration regression equation (Eq. 3) and the large

coefficients of determination resulting from the subsequent validation measurements (both

from spectroscopy and hyperspectral imagery) are encouraging given that the spatial

variation in factors such as biomass and foliar nitrogen content would also be expected to

influence PRI (Peñuelas et al. 1995). Given that PRI is expected to be positively correlated

to biomass and foliar nitrogen content (Aparicio et al. 2000; Trotter et al. 2002) and rust

incidence is generally negatively correlated (for example Neumann et al. 2004), it is not

surprising that PRI is observed to be a robust spectral index in quantifying yellow rust

infection.

This study was done for a single field site and spectral reflectance characteristics of crop

plants are a function of a broad range of environmental factors that include soil type and

texture, nutrient and water status, variety, stage of development and seasonal effects.

Therefore, in spite of the comments in the paragraph above, future work should include

such environmental parameters to validate further the relations observed in this study.

Nevertheless, the results of this work confirm PRI is a potential candidate for operational

use in the monitoring of yellow rust, and could form the basis of an on-the-go sensor and

variable-rate spray applicator or a remote detection and mapping process.
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