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Abstract—The vegetation indices from hyperspectral data have
been shown to be effective for indirect monitoring of plant diseases.
However, a limitation of these indices is that they cannot distinguish
different diseases on crops.We aimed to develop new spectral indices
(NSIs) thatwould be useful for identifyingdifferent diseases on crops.
Three different pests (powdery mildew, yellow rust, and aphids) in
winter wheat were used in this study. The new optimized spectral
indices were derived from a weighted combination of a single band
and a normalized wavelength difference of two bands. The most and
least relevant wavelengths for different diseases were first extracted
from leaf spectral datausing theRELIEF-Falgorithm.Reflectance of
a single band extracted from the most relevant wavelengths and the
normalized wavelength difference from all possible combinations of
the most and least relevant wavelengths were used to form the
optimized spectral indices. The classification accuracies of these new
indices for healthy leaves and leaves infected with powdery mildew,
yellow rust, and aphids were 86.5%, 85.2%, 91.6%, and 93.5%,
respectively.We also applied theseNSIs for nonimaging canopy data
of winter wheat, and the classification results of different diseases
were promising. For the leaf scale, the powdery mildew-index (PMI)
correlated well with the disease index (DI), supporting the use of the
PMI to invert the severity of powdery mildew. For the canopy scale,
the detection of the severity of yellow rust using the yellow rust-index
(YRI) showed a high coefficient of determination ( ) between
the estimated DI and its observations, suggesting that the NSIs may
improve disease detection in precision agriculture application.

Index Terms—Aphids, canopy reflectance, hyperspectrum, new
spectral indices (NSIs), powdery mildew, winter wheat, yellow rust.

I. INTRODUCTION

W INTER wheat (Triticumaestivum L.) is one of the most
prevalent crops in China. Many diseases could threaten

winter wheat: stripe rust, powdery mildew, aphids, etc. When

environmental conditions are favorable, an outbreak of these
diseases can spread rapidly, resulting in significant loss of yield
and quality [1]. Each disease has its own characteristics and,
consequently, requires corresponding measures. Therefore, de-
veloping technologies for accurately monitoring and identifying
the occurrence of diseases is extremely important in agricultural
management.

Detecting and predicting the occurrence of diseases aremainly
based on meteorological data, such as temperature and relative
humidity, which is acquired with plot-level measurements with-
out spatial distribution information [2]. Fortunately, remote
sensing technology provides a way to possibly detect crop
diseases at the regional scale. Several advancements have been
made to monitor crop diseases, including X-ray, ultrasound, and
multispectral and hyperspectral technologies. Among these
technologies, the hyperspectral method has several advantages
for detecting and monitoring diseases over a vast area [3]. In
optical remote sensing, the wavelength range mainly focuses on
ultraviolet (200–400 nm), visible (400–800 nm), and shortwave
infrared (800–2500 nm) bands. Depending on the application
area and aim, a few subregions of the spectrum have recently
attracted scholarly interest. By analyzing the leaf spectral of
wheat with fusarium head bligh, Delwiche and Kim [4] found
that the disease can cause relatively strong spectral responses at
550, 568, 605, 623, 660, 697, 715, and 733 nm. Huang et al. [5]
studied the spectral characteristics of wheat with yellow rust and
identified sensitive bands at 630–687 nm, 740–890 nm, and 976–
1350 nm. Based on these findings, the authors used the photo-
chemical reflectance index (PRI) and successfully monitored
disease croplands [6]. Rumpf et al. [7] detected beet diseases in
their earliest stages using a high-precision recognition model
based on a support vector machine (SVM) and a spectral index.
Mirik et al. [8] used airborne hyperspectral imagery and the SVM
classifier to effectively identify noxious weeds. Combining
independent component analysis and principal component anal-
ysis, Muhammed [9] achieved good results in a study on wheat
with tan-spot disease.

Several current vegetation indices have been proven effective
for indirect monitoring of plant diseases. However, these indices
have been limited in their sensitivity to certain plant parameters,
such as variations in pigment content [10]–[12], canopy archi-
tecture [13, 14], and water status [15, 16]. Using these indices to
identify a specific disease remains difficult because the unique
spectral characteristics of each condition have yet to be clarified.
Therefore, new disease-detecting spectral analysis methods and
algorithms are particularly needed; these can likely be achieved
through a combination of wavelengths.
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In this study, leaf spectral reflectance measurements of crop
plants infectedwith powderymildew, yellow rust, or aphidswere
used to develop new spectral indices (NSIs). Four NSIs have
been proposed to identify healthy, and powdery mildew-, yellow
rust-, and aphids-infected plants. To validate the NSIs, canopy
spectral data from field spectroscopy were used.

II. MATERIALS AND METHODS

A. Field Conditions and Pathogen Inoculation

The experiments were conducted at Beijing Xiaotangshan
Precision Agriculture Experimental Base in the Changping
district, Beijing ( ). The average contents
of nutrients in topsoil (0–0.30 m depth) were as follows: organic
matter 1.42%–1.48%, total nitrogen 0.08%–0.10%, alkali-
hydrolysis nitrogen , available phospho-
rus , and rapidly available potassium

.
The cultivars (98–100 and Jingdong 8) ofwinter wheat that are

susceptible to yellow rust and powdery mildew were inoculated
with yellow rust and powdery mildew in early April by spore
inoculation according to the National Plant Protection Standards
[1]. The cultivar Jingong 8 was also inoculated with aphids.
During the growing season, wheat aphids (Sitobion avenae F.)
also occurred throughout the entire experimental field.

B. Leaf Spectral Measurement

An ASD FieldSpec spectrometer (Analytical Spectral De-
vices, Inc., Boulder, CO, USA) equipped with a Li-Cor 1800-
12 integration sphere (Li-Cor, Inc., Lincoln, NE, USA) was used
tomeasure the reflectance and transmittance of the upper faces of
the leaves. The spectrometer was fitted with a 25° field-of-view
bare fiber-optic cable and operated in the 350–2500 nm spectral
range with a sampling interval of 1.4 nm between 350 and
1050 nm, and 2 nm between 1050 and 2500 nm. The spectral
resolution was 3 nm for the 350–1000 nm region and 10 nm for
the 1000–2500 nm region. In this study, only the spectral region
of 400–1000 nm was analyzed. For each sample, measurements
were made on five different areas to quantify the small but not
negligiblewithin-leaf variability. The scan time required for each
sample was about 2 min. The sample was illuminated by a
focused beam, and the radiation that was captured by the
spectrometer was the average reflected radiation within the
Li-Cor 1800-12 integration sphere. The data were collected in
the middle of April because the three diseases were in the
incidence at that time.

C. Classification of Disease Index

The disease index (DI) is commonly cited to describe the
severity of crop diseases. With the leaf scale, the severity of crop
diseases is mainly reflected by the extent of bacterial infection on
the leaves and the ratio of the lesion to the healthy part of the
plant. Thus, visual judgment of the lesion’s coverage ratio on the
blade indicates the severity of infection on this scale [17], [18].
Before completing leaf spectral and biochemical parameter
measurements, photos were taken of each leaf, and the severity

of disease was estimated based on the images. The lesion ratio
was divided into 10 categories to reduce human error: 3%–10%
( ), 10.1%–20% ( ), 20.1%–30% ( ), 30.1%–

40% ( ), 40.1%–50% ( ), 50.1%–60% ( ),
60.1%–70% ( ), 70.1%–80% ( ), 80.1%–90%
( ), and 90.1%–100% ( ) [13].

D. New Spectral Indices

In this study, we proposed NSIs that can quantitatively
distinguish between specific plant diseases. Single wavelength
responses to different diseases have their own characteristics,
especially when the disease is in advanced stage (i.e., severe).
However, normalized wavelength differences of two bands are
sensitive to changes in the hyperspectral data as a result of yellow
rust, powdery mildew, and aphids [19]. Therefore, NSIs that
combine a single wavelength and a normalized wavelength
difference can effectively identify specific plant diseases [19].

To find the best combination of single wavelength and wave-
length difference, the RELIEF-F algorithm [20] was used. The
original Relief algorithm [21] was designed to estimate the
quality of attributes according to how well their values distin-
guished between instances within the close proximity of each
other. The RELIEF-F algorithm is not limited to two class
problems, and it is more robust and can deal with incomplete
and noisy data. The two nearest neighbors of a given samplewere
sought using the RELIEF-F algorithm. Each neighborhood
consists of k samples. For a given k, the set of k nearest neighbors
of the same class were deemed a “hit” and from a different class
were deemed a “miss”. The algorithm is shown in pseudo code in
Fig. 1 and detailed information on the RELIEF algorithm can be
found in Kira and Rendell [21].

For a specific index, the most relevant single wavelength was
obtained using the RELIEF-F algorithm, which belonged to the
best weighted (20%) wavelengths. A normalized wavelength
difference needed two wavelengths: one from the top 10% (i.e.,
best weighted single wavelengths) and one from the bottom 10%
(i.e., worst weighted). All possible combinations were searched
until the distance between the two wavelengths was less than

Fig. 1. Pseudo code of the RELIEF-F algorithm for two-class classification.
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50 nm. Finally, the RELIEF-F algorithm was used again to find
the best weighted normalized wavelength differences. In addi-
tion, we set the possible weights as and 0.5 for the single
wavelength.

E. Comparison With Common Vegetation Indices

The ability to identify disease with these NSIs was tested and
comparedwith other commonly used vegetation indices from the
literature. The primary concern was that these indices should be
sensitive to chlorophyll content, canopy architecture, or water
status, including theMSR [22], the NDVI [14], the NRI [23], the
PRI and PhRI [24], the SIPI [11], theNPCI [25], theARI [26], the
RVSI [27], and the MCARI [28].

F. Application of Datasets

To validate the usefulness of the NSIs, we used canopy
spectral data from field spectroscopy and the observed DI of
yellow rust in wheat. The datasets were obtained under different
measuring conditions and with different sensors.

G. Canopy Spectral Data

The canopy spectral measurements were taken by an ASD
FieldSpec Pro spectrometer (Analytical Spectral Devices, Boul-
der, CO, USA) fitted with 25 field-of-view fiber optics. All
canopy spectral measurements were taken from a height of 1.3 m
above the ground (the height of the wheat was at
maturity). The spectra were acquired in the 350–2500 nm spec-
tral range at a spectral resolution of 3 nm between 350 and
1050 nm and 10 nm between 1050 and 2500 nm. A

calibration panel was used to calculate
reflectance. All irradiance measurements were recorded as an
average of 20 scans at an optimized integration time. Prior to
subsequent preprocessing, all spectral curves were re-sampled
with 1-nm interval. All measurements were made under clear
blue-sky conditions between 10:00 and 14:00 (local time). The
canopy spectra were acquired for winter wheat infected with
yellow rust, powdery mildew, or aphids.

Fig. 2. Contour plot visualizing the correlation of narrowwavelength from400 to
1000 nm.

Fig. 3. Single wavelengths relevant for: (a) healthy winter wheat leaves, and
(b) powdery mildew-, (c) yellow rust-, and (d) aphid-diseased winter wheat
leaves, according to the RELIEF-F algorithm.
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H. Assessment of Disease Index

For yellow rust, the assessment of the DI was acquired at the
same time as the canopy spectra were measured. To obtain the
DI, 20 individual plants were randomly selected from each plot
for disease inspection. When inspected, the plants were grouped
into 1 of 9 classifications: 0% (incidence level, ), 1%
( ), 10% ( ), 20% ( ), 30% ( ), 45%
( ), 60% ( ), 80% ( ), and 100% ( ) covered
by rust with 0% representing no incidence of yellow rust and
100% representing the greatest incidence. The DI was then
calculated using [1]

where is the total number of leaves of each degree of disease
severity, is the incidence level, and is the highest incidence
level (in this work, ranged from 0 to 8).

In this study, spectra of 43 wheat leaves were measured, and
the DI for each leaf was dispersed.

III. RESULTS AND ANALYSIS

A. Correlation Between Single Wavelengths

In this study, the wavelength range of 400–1000 nmwas used.
The correlation coefficients of different wavelengths were cal-
culated (Fig. 2). It can be seen that closer wavelengths were
highly correlated. Normalized wavelength differences describeFig. 4. Scatter plots of the classification results based on the HI, PMI, YRI,

and AI.

TABLE I
CLASSIFICATIONACCURACY FOREACHDISEASE,ACCORDING TOHI, PMI,YRI, ANDAI
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changes in the spectral signature, and the combination of two
highly correlated wavelengths is unsuitable. Therefore, the
minimal distance between wavelengths was set to 50 nm. Con-
sidering the high similarity of near infrared bands between 750
and 1000 nm (the correlation coefficients reached almost 0.9)
(Fig. 2), onlywavelengths ranging from400 to 800 nmwere used
in the RELIEF-F algorithm.

B. NSIs of Disease

1) Construction of the Indices: Before the NSIs were
established, the most relevant single wavelength for the
diseases was calculated according to the RELIEF-F algorithm
(Fig. 3). For healthy leaves, themost relevant single wavelengths
were around 400 nm [Fig. 3(a)].

The best and worst weighted 10% of the single wavelengths
were at 400 nm and between 680 and 780 nm, respectively
[Fig. 3(a)]. Single wavelengths around 400, 500, and 750 nm
were highly relevant for winter wheat leaves diseased with
powdery mildew, and the normalized reflectance differences
were around 500, 680, and 750 nm [Fig. 3(b)]. Single wave-
lengths relevant to yellow rust infection were around 540 and

730 nm, and for normalized reflectance differences, the wave-
lengths of 430 and 670 nm were included [Fig. 3(c)]. For aphid
infection, the single wavelengths were around 400 nm and for
normalized reflectance differences, wavelengths between 720
and 780 nm were included [Fig. 3(d)].

Single wavelengths and the normalized reflectance differences
of high relevance were extracted based on the RELIEF-F algo-
rithm, and the possible wavelength combinations and weights
were calculated for the specific spectral index of each category.
Finally, the health-index (HI) was derived based on reflectance at
403 nm and normalized reflectance difference between 402 and
739 nm (2). The powdery mildew-index (PMI) was proposed
based on reflectance at 738 nm and normalized reflectance
difference between 515 and 698 nm (3). The yellow rust-index
(YRI) was calculated based on reflectance at 736 nm and normal-
ized reflectance difference between 419 and 730 nm (4). The
aphids-index (AI) was derived based on reflectance at 403 nm and
normalized reflectance difference between 400 and 735 nm (5)

2) Classification of Different Diseases: The ability of the
NSIs to distinguish between diseases is shown in Fig. 4 and
the classification accuracy is shown in Table I. The threshold
was optimized to obtain better separation. The classification
accuracies of HI, PMI, YRI, and AI were 86.5%, 85.2%,
91.6%, and 93.5%, respectively, and the Kappa indices were
0.73, 0.57, 0.83, and 0.75, respectively. These results showed
that the NSIs were able to detect diseases and distinguish
between them with good reliability.

3) ComparisonWithCommonVegetation Indices:TheseNSIs
also had higher classification accuracy compared with other

Fig. 5. Relationship between the PMI and the DI.

TABLE II
COMPARISON OF THECLASSIFICATIONABILITY OF THEHI AND THEAI ANDCOMMON SPECTRALVEGETATION INDICES:MSR,NDVI,NRI, PRI ANDPHRI, SIPI,NPCI,ARI, RVSI,

AND MCARI.
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commonly used vegetation indices. The classification accuracy
of the HI was the best (86.5%) for the differentiation of healthy
and diseased winter wheat leaves, followed by PRI, NDVI,
and MSR with classification accuracies of 84.9%, 83.6%, and
82.9%, respectively (Table II). The classification of aphid-
diseased leaves was the best using AI with a classification
accuracy of 93.5%. The PRI, MSR, and ARI showed
acceptable classification accuracies (85.3%, 84.7%, and
80.2%, respectively). For the winter wheat, rust and powdery

mildew indices were unsuitable to detect diseases with
classification accuracy of 50% for all applied indices.

4) Correlation Between PMI and DI: Statistical correlation
analysis was carried out on the PMI and the DI, and the DI of the
remote sensing inversion model was established (Fig. 5). A
significant positive correlation was found between the DI and
the PMI ( , ), suggesting that the PMI can
potentially monitor the severity of powdery mildew.

C. Application of Spectral Disease Indices

1) Classification Based on Canopy Spectral Data: To further
validate these NSIs, we used canopy spectral data of wheat
infected with powdery mildew, yellow rust, and aphids.
Because we had no health samples from the same period, the
HI was not used for separating different diseases. The
identification results of the other indices are shown in Fig. 6.
The threshold needed to be recalculated for each dataset due to
different experimental conditions and sensor specifications. For
nonimaging data from the canopy scale, the classification
accuracies of PMI, YRI, and AI were 82.4%, 84.7%, and
87.6%, respectively.

2) Estimation of the DI of Yellow Rust: For the canopy
spectrum of winter wheat with yellow rust, the DI of 55
samples was measured. The YRI corresponding to the
measurement sample point was calculated from the canopy
data. The measured DI was divided into two parts: one for
modeling and the rest for verification. Fig. 7(a) shows the
scatter plot of the YRI and the DI of winter wheat. The
prediction regression of the DI using the YRI can be
expressed as ( )

The reliability of the regression equation was satisfactory, with a
regression coefficient of . Fig. 7(b) shows the
verification result, and the between the estimated and the
measured DI was 0.86 ( ), indicating that it is feasible to
use YRI to predict the severity of winter wheat diseased with
yellow rust.

IV. DISCUSSION

Different diseases can impact the spectral signature of winter
wheat leaves in different ways [29]. This study showed that the
NSIs offer a simple and effective way to detect diseases using
hyperspectral data. Compared with the commonly used vegeta-
tion indices, theNSIs have several advantages as a result of using
the RELIEF-F algorithm because this algorithm can deal with
multiclass classification problems. Because the wavelengths
were standardized before extraction of all NSI features, the
impacts of different ecological conditions, illumination, crop
type, or sensor-specific effects were reduced [30], [31]. Because
the proposed NSIs are based on the combination of the most
relevant wavelength and the normalized wavelength, they offer
opportunities to detect and identify diseases in winter wheat
using the specific characteristics of different foliar diseases.

Before identifying each disease, a binary classification needs
to be carried out to separate healthy wheat plants from diseased

Fig. 6. Scatter plot of the classification results based on application of the PMI,
YRI, and AI to canopy spectral data.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

oneswith theHI. The narrow bands that constitute the indices HI,
PMI,YRI, andAI are generally centered at 400, 550, and 720 nm.
As Gitelson and Merzlyak [32] indicated, the reflectance near
700 nm is a fundamental feature of green vegetation. In the past
few decades, many studies have focused on plant diseases, and a
large range of wavelengths in the visible and near infrared ranges
have been tested [33]–[37]. For example, PMIwas constituted by
three narrow bands in the visible and red edge (i.e., 515, 698, and
738 nm). According to Merzlyak et al. [38], the reflectance from
510 to 520 nm represents the absorption maximum of carote-
noids. Furthermore, the reflectance at 698 and 738 nm is close to
the red-edge position [39]–[43], and migration toward the red-
edge position has been used as an indicator of vegetation stress
[44]–[46]. Therefore, the NSIs proposed by this study are
suitable for disease detection.

TheNSIs produced good results whenwe attempted to classify
plant diseases. A successful application of datasets from the
canopy scale demonstrated the transferability of these NSIs. Due
to lack of data, the applicability of these NSIs for hyperspectral
imaging data has not been determined. Moreover, spectral
vegetation indices proposed from hyperspectral data may have

more difficulty in identifying crop diseases when atmospheric
conditions are poor (compared to when determined with in situ
spectral measurements).

V. CONCLUSION

All four NSIs were able to detect and identify specific plant
diseases. Using these NSIs, diseases could be identified and
differentiated, which is not possible when using existing indices
that are sensitive toabiotic stress conditions (i.e., indices related to
chlorophyll content).We expect that the use of hyperspectral data
to develop NSIs will further improve the sensitivity of disease
detection in the near future. Importantly, the current analysis
detectedmiddle-stagedisease in thecrops,which leavesaneed for
discovering methods for detecting and recognizing disease in the
earliest stages. Future studies should attempt to fill this gap.
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