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Abstract: The monitoring of winter wheat Fusarium head blight via rapid and non-destructive 
measures is important for agricultural production and disease control. Images of unmanned 
aerial vehicles (UAVs) are particularly suitable for the monitoring of wheat diseases because they 
feature high spatial resolution and flexible acquisition time. This study evaluated the potential to 
monitor Fusarium head blight via UAV hyperspectral imagery. The field site investigated by this 
study is located in Lujiang County, Anhui Province, China. The hyperspectral UAV images were 
acquired on 3 and 8 May 2019, when wheat was at the grain filling stage. Several features, 
including original spectral bands, vegetation indexes, and texture features, were extracted from 
these hyperspectral images. Based on these extracted features, univariate Fusarium monitoring 
models were developed, and backward feature selection was applied to filter these features. The 
backpropagation (BP) neural network was improved by integrating a simulated annealing 
algorithm in the experiment. A multivariate Fusarium head blight monitoring model was 
developed using the improved BP neural network. The results showed that bands in the red region 
provide important information for discriminating between wheat canopies that are either slightly 
or severely Fusarium-head-blight-infected. The modified chlorophyll absorption reflectance index 
performed best among all features, with an area under the curve and standard deviation of 1.0 and 
0.0, respectively. Five commonly used methods were compared with this improved BP neural 
network. The results showed that the developed Fusarium head blight monitoring model achieved 
the highest overall accuracy of 98%. In addition, the difference between the producer accuracy and 
user accuracy of the improved BP neural network was smallest among all models, indicating that 
this model achieved better stability. These results demonstrate that hyperspectral images of UAVs 
can be used to monitor Fusarium head blight in winter wheat. 

Keywords: remote sensing; wheat disease; classification; feature selection; BP neural network; 
disease monitoring 

 

1. Introduction 

As the dominant staple in most regions of North Africa as well as West and Central Asia, 
wheat (Triticum aestivum L.) is consumed by 2.5 billion people in 89 countries, and, annually, a total 
of 215 million hectares are used to grow wheat [1]. Wheat Fusarium head blight (FHB), or wheat scab, 
is an intrinsic infection by Fusarium graminearum (Gibberella zeae) [2]. The normal physiological 
function of FHB-infected wheat is destroyed, and both its internal physiological structure and 
external morphology change [3]. In addition, the disease produces a number of mycotoxins, of 



Remote Sens. 2020, 12, 3811 2 of 21 

 

which deoxynivalenol (DON) is the most toxic. DON is toxic to both humans and animals, and is life 
threatening in severe cases [4]. The traditional method of FHB monitoring in the field uses visual 
inspection, which is time-consuming and inefficient, especially when large areas are monitored [5]. 
Moreover, the traditional method cannot provide precise distribution data of FHB within a 
particular wheat field, which often leads to the excessive use of pesticides [6]. 

With the development of Earth observation systems, research increasingly attempts to apply 
remote sensing technology for crop disease monitoring to increase the monitoring accuracy [7]. The 
theoretical basis of these studies is that the transpiration rate, chlorosis, leaf color, and morphology 
of crops will change in response to FHB infection. This ultimately leads to changes in the spectral 
reflectance characteristics of crops [1]. Many researchers have tried to monitor wheat FHB via 
remote sensing technology. Jin et al. (2018) applied a variety of deep neural network algorithms to 
hyperspectral images to identify FHB-infected areas. They found that a model based on a 
hybrid-structure deep neural network achieved the best performance for identifying FHB-infected 
areas [8]. Zhang et al. (2019) proposed the Fusarium classification index (FCI) for the detection of 
wheat FHB using hyperspectral microscopy images. The FCI was compared with six commonly 
used vegetation indexes to identify FHB-infected areas. The experimental results showed that the 
FCI achieved a better performance than other vegetation indexes [9]. Zhang et al. (2020) also 
monitored FHB using hyperspectral images. A deep convolutional neural network (DCNN) was 
established and achieved high monitoring accuracy with an R2 of 0.97 and a root mean square error 
(RMSE) of 3.78 [10]. 

As an effective method to generate high-frequency remote sensing information on crop 
conditions, unmanned aerial vehicles (UAVs) are widely used in agriculture. UAV data are used to 
estimate the leaf carotenoid content, biomass, nitrogen contents, and chlorophyll densities [11–14]. 
For two reasons, UAV imagery is particularly applicable to monitoring wheat FHB. First, the 
symptoms of wheat FHB, such as wrinkled, shrunken, and bleached organic tissue, commonly occur 
in the spikelets at the top of the wheat plant [15]. The spatial resolution of UAV images can reach 2–
5 cm or less, and it is sufficiently high that the infected parts of wheat can be identified directly [16]. 
Second, the FHB epidemics in China are severe and frequent in areas with cloudy rain and fog, such 
as the middle and lower regions of the Yangtze River [17]. The fields in the optical satellite images of 
these areas are often covered by clouds, which reduces the usability of these images. The UAV 
platform has a flexible mission planning, and it could acquire images in better weather conditions 
[18]. 

UAV images can be divided into multispectral images and hyperspectral images according to 
the applied band settings. Multispectral images are produced by measuring the reflected energy in 
multiple specific sections of the electromagnetic spectrum through specific sensors [19]. 
Multispectral images have been applied for various remote sensing applications, such as vegetation 
monitoring, tree height estimations, and nitrogen status assessments [13,20,21]. With the further 
development of sensors and imaging technology, hyperspectral images have become increasingly 
available. Hyperspectral sensors can simultaneously measure the reflected energy of the target area 
with tens to hundreds of continuous and subdivided spectral bands in the ultraviolet, visible, 
near-infrared, and mid-infrared regions of the electromagnetic spectrum [19]. Thus, hyperspectral 
images are more sensitive to subtle changes in reflected energy. Until now, hyperspectral images 
from UAVs have been utilized for many assessments, such as crop yield prediction, loss assessment, 
vegetation classification, and soil salinity assessment [11,22–25]. In addition, many researchers used 
hyperspectral images from UAVs to detect crop pests and diseases, such as powdery mildew, 
locusts, anthracnose, and yellow rust [23,26–28]. However, wheat FHB has not been monitored using 
UAV hyperspectral imagery. 

For this study, the hyperspectral images of UAV were applied to monitor wheat FHB in a 
wheat field. We hypothesized that FHB could cause changes in transpiration rate, chlorosis, leaf 
color, and morphology in infected wheat plants, which, in turn, affect spectral and textural 
characteristics of wheat in the hyperspectral images. Taking this into account, we proposed an 
approach that combined original spectral bands, vegetation indexes, and texture features to monitor 
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the severity of wheat FHB. The main objectives of this paper are: (i) to extract some features that can 
indicate the spectral and textural characteristics of wheat, and select the features that are sensitive 
to wheat FHB; (ii) to develop a multivariate FHB monitoring model based on these sensitive 
features; and (iii) to apply a multivariate FHB monitoring model to map wheat FHB infection in the 
study area. 

2. Materials and Methods 

2.1. Study Area and Dataset 

The experimental field investigated in this study is located in Lujiang County, Anhui Province, 
China. Its coordinates are 117°13′12″E and 31°29′0″N. Winter wheat is the main crop produced in 
Lujiang County, and the main variety is Yangmai 25, which is susceptible to wheat FHB. This 
location has a north subtropical humid monsoon climate, with an average annual temperature of 
15.8 °C; the highest temperature is in July and the lowest temperature is in January. The average 
annual precipitation is 1188 mm and the rainy season lasts from June to July every year [29]. In this 
region, the soil belongs to alfisols and FHB is a major wheat disease [30]. Figure 1 shows the 
location of the field site. 

 
Figure 1. Location and sampling sites of the experimental field. The orange rectangle indicates the 
specific location of Lujiang County in Anhui, China, the green rectangle marks the boundary of the 
experimental field, and the orange dots indicate locations sampled for wheat fusarium head blight 
(the image on the upper left is a Gauthier satellite image, the image at the bottom left is a Google 
Earth satellite image, and the image on the right is the unmanned aerial vehicle (UAV) 
hyperspectral image acquired on 3 May 2019). 

Hyperspectral UAV images were acquired on 3 and 8 May 2019, when the wheat was at the 
grain filling stage. The UAV used in the experiment was an M600 Pro aircraft of Daijang 
Innovations (DJI), and a Cubert S185 FireflEYE SE hyperspectral imaging camera was used. The 
spectral range of the S185 was from 450 to 950 nm, and the average raw sampling width was 4 nm. 
The radiance calibration of the hyperspectral imaging camera was carried out before capturing 
hyperspectral images. The camera exposure time was automatically matched to the environmental 
condition. The height above ground of the UAV was 60 m, the flight speed was 3 m/s, camera 
triggering frequency was 0.8 s, forward overlap was 80%, and side overlap was 65%. The spatial 
resolution of hyperspectral images was 4 cm, and the raw number of bands in the imagery was 125. 
The area of the experimental field was 5000 m2, and uniform wheat cultivars, cultivation procedures, 
and management practices were applied to this field. All wheat plants in this field were infected 
with FHB because no pesticide was used at the early stage. Fifty plots, each with an area of 1 m2, 
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were selected in the experimental field. To accurately locate the plots in hyperspectral images, a flag 
was placed next to each plot. The severity of the FHB of the plot was calculated according to the 
rules for monitoring and forecasting wheat head blight suggested by the National Plant Protection 
Department of China (Chinese Standard: GB/T 15796–2011) [31,32]. When inspecting the disease 
severity, 50 individual plants were randomly selected in every plot, and the symptoms of wheat 
FHB were identified by visual inspection. Then, the number of plants with infected spikelets was 
recorded, the ratio of infected plants in each plot was calculated, and all plots were classified into 
five classes according to the calculated ratio of infected plants: 0.1–10% (class 1), 10–20% (class 2), 
20–30% (class 3), 30–40% (class 4), and 40–100% (class 5). In practice, wheat fields with more than 30% 
infected wheat ears would be destroyed because of the excessive harmful substances produced. 
Consequently, plots were quantitatively classified into two classes for subsequent analysis: Plots 
with a ratio of infected wheat ears to healthy wheat ears below 30% were labeled as slightly 
diseased, and plots with a ratio exceeding 30% were labeled as severely diseased. Figure 2 shows 
slightly diseased and severely diseased wheat canopies in red–green–blue (RGB) imagery captured 
by the UAV. 

 
Figure 2. Slightly diseased (left) and severely diseased (right) wheat canopies in red–green–blue 
(RGB) imagery captured by the UAV. 

2.2. Data Preprocessing 

When acquiring UAV hyperspectral images, the drone was equipped with a position and 
orientation system to record the real-time position and attitude of the sensors. After the mission 
was completed, the images obtained from the UAV imaging spectrometer were a 
high-spatial-resolution panchromatic image (JPG format) and a low-spatial-resolution 
hyperspectral cube image (CUE format). Then, the fusion and stitching operations were carried out 
in CubertPolot and Photoscan, respectively. During the acquisition of hyperspectral images, noise 
would be added to the radiated energy output of the sensor due to the systematic errors in the 
sensor, and this resulted in a discrepancy between the radiation values of hyperspectral images and 
the true radiation values. Thus, a radiometric calibration was carried out using the following 
equation: 

L = M * DN + A, (1) 

where L is the radiation value, M is the gain, A is the bias, and DN is the pixel value. After that, 
atmospheric correction was used to remove the effects of the atmosphere on the reflectance values 
of hyperspectral images. Figure 3 shows the main steps of the methodological framework 
developed in this research. These steps are described below. 
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Figure 3. Methodological framework with the main steps. 

When inspecting the quality of hyperspectral images, the first nine bands and the last 15 bands 
of each image were excluded because they were found to have been affected by noise during the 
post-process. Then, a number of features, including original spectral bands, vegetation indexes, and 
texture features, were extracted from these hyperspectral images. 

After removal of all noise-affected bands, 101 bands remained in each hyperspectral image. 
Since the spectral sampling interval of hyperspectral images was small, two adjacent bands are 
highly correlated. In this study, an original spectral band was selected as a feature in every five 
adjacent bands to decrease the correlation between features, and the selection was carried out in a 
regular, consistent way, leading to a 20 nm sampling interval. 

The vegetation indexes used in this study are commonly used in the monitoring of crop pests 
and diseases. Table 1 presents detailed descriptions of these vegetation indexes. 

Table 1. Vegetation indexes used in this study. 

Title Definition Description or Formula Reference 
PRI Photochemical reflectance index (R570 − R531)/(R570 + R531) [28] 

PhRI Physiological reflectance index (R550 − R531)/(R550 + R531) [33] 
NRI Nitrogen reflectance index (R570 − R670)/(R570 + R670) [34] 

NDVI Normalized difference vegetation index (R830 − R675)/(R830 + R675) [35] 
MSR Modified simple ratio (R800/R670 − 1)/sqrt(R800/R670 + 1) [36] 

MCARI Modified chlorophyll absorption reflectance 
index 

((R701 − R671) − 0.2((R701 − 
R549))/(R701/R671) [37] 

GI Greenness index R554/R677 [38] 

TVI Triangular vegetation index 0.5(120(R750 − R550) − 200(R670 − 
R550)) 

[39] 

TCARI Transformed chlorophyll absorption in 
reflectance index 

3((R700 − R675) − 0.2(R700 − 
R500)/(R700/R670)) 

[40] 

RVSI Ratio vegetation structure index ((R712 + R752)/2) − R732 [41] 
PSRI Plant senescence reflectance index (R680 − R500)/R750 [42] 

Several texture features were also extracted from these hyperspectral images. The texture of an 
image is a feature that reflects the homogeneity of the image. When the wheat canopy is infected by 
FHB, the ears of wheat will show brown spots, which gradually expand to the whole spikelet and 
cause the spikelet to shrivel [43]. Wheat canopies with different FHB-infection severities will have 
different texture features. The local binary pattern (LBP) was used to describe texture features in 
this study. The LBP is a commonly used local binary descriptor to describe the texture 
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characteristics of an image [44]. The mathematical expression of the LBP is presented in the 
following: 

LBP(P,R)=� S(xi −  xc) * 2i
P-1

I = 0

,(i = 0,1,…,P-1) (2) 

s(u)= �1, u ≥ 0
0, u < 0, (3) 

where P represents the number of neighbors, R represents the radius, i represents one of the 
neighbors, xi represents the pixel value of i, and xc represents the pixel value of the central pixel. 
The proposed work used three combinations of P and R: P = 8 and R = 1 (LBP(8,1)), P = 8 and R = 2 
(LBP(8,2)), and P = 16 and R = 2 (LBP(16,2)). Figure 4 shows the relationship between a pixel and its 
neighbors for three combinations of P and R. 

 
Figure 4. General overview of the three types of local binary patterns (LBPs) used in this study. 

When original spectral bands, vegetation indexes, and texture features were collected, the 
pixels located in experimental plots were extracted. Firstly, a support vector machine (SVM) was 
used to classify the pixels in the hyperspectral images into five categories: 1, bare soil; 2, road; 3, 
wheat canopy; 4, other plants; 5, other non-plants. The pixel-based classification approach was 
applied because the pixels in the wheat canopy were well-defined and well-separated, and mixed 
pixels in the wheat canopy were abandoned in the end. The user accuracies and producer 
accuracies of all classes were higher than 80%, and the overall accuracy was 87.14%. In this 
experimental field, wheat is rarely mixed with other vegetation, and weeds are mainly distributed 
in trails between wheat fields. Thus, the errors between the “wheat canopy” and the “other plants” 
classes are small. Since the pixel-based classification result contained noise, majority/minority 
analysis was used in the post-processing of the classification to eliminate noise [45]. After 
identifying the pixels that belong to the wheat canopy, the wheat canopies close to a flag identifying 
the experimental plot were selected, and the pixels located in experimental plots were extracted. 
Considering the spatial resolution of hyperspectral images of 4 cm and the size of each plot of 60 cm 
× 60 cm, the pixels in the range of 15 pixels × 15 pixels at the center of the selected wheat canopies 
were considered as being located in experimental plots. For each plot, the pixels located in the plot 
were chosen (except for the central pixel), and the values of these pixels were averaged. Eighty 
percent of these mean values and corresponding disease severities were used as the training set and 
20% were used as the validation set to train and evaluate the FHB monitoring model. These mean 
values and corresponding disease severities were sorted randomly. The classification was repeated 
100 times, and the average accuracy of the FHB monitoring model was calculated. Moreover, the 
values of central pixels in experimental plots and the corresponding disease severities were used as 
the test set. 
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2.3. Fusarium Head Blight Detection Using a Univariate Classification Approach 

Firstly, a univariate classification approach was used to develop the FHB monitoring model. 
The receiver operating characteristic (ROC) curve, which is widely used in remote sensing 
applications, was applied to evaluate the performance of the model to discriminate two types of 
plots. The construction of an ROC curve, as required for the identification of slightly diseased 
wheat and severely diseased wheat at the pixel level, was considered a binary classification 
problem, which results from the thresholding of a variable (original spectral bands, vegetation 
indexes, and texture features). For each pixel, the possible classification result is listed in Table 2. 

Table 2. Possible classification result of a pixel. 

 Reference 
  Slightly Diseased Severely Diseased 

Classification 
Result 

Slightly 
diseased 

True positive  
(Slightly diseased pixel classified as 

slightly diseased) 

False positive  
(Severely diseased pixel classified as 

slightly diseased) 

Severely 
diseased 

False negative  
(Slightly diseased pixel classified as 

severely diseased) 

True negative  
(Severely diseased pixel classified as 

severely diseased) 

Two indicators of classification performance, sensitivity and specificity, were calculated using 
the following equations: 

Sensitivity = TruePositive/(TruePositive + FalseNegative) (4) 

Specificity = TrueNegative/(TrueNegative + FalsePositive). (5) 

The ROC curve was drawn with sensitivity as the ordinate and 1—specificity as abscissa [46]. 
When evaluating the performance of a univariate FHB monitoring model, the values of the variable 
were given based on an initial value and a step. The corresponding values of specificity and 
sensitivity were calculated, and the ROC curve was obtained. Theoretically, the optimal value of the 
variable can be located in the ROC curve where the sum of sensitivity and specificity is at its 
maximum. In addition, the area under the ROC curve (AUC) was used to evaluate the overall 
classification performance of the univariate model. The values of AUC range from 0.0 to 1.0, and 
the higher the value, the better the classification performance of the univariate model; Figure 5 
shows the general overview of the ROC curve and AUC. 

 
Figure 5. General overview of the receiver operating characteristic (ROC) curve and area under the 
curve (AUC). 
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2.4. Fusarium Head Blight Detection Using a Multivariate Classification Approach 

After the univariate FHB monitoring models (that were developed using all features) were 
evaluated, a multivariate classification approach was used to develop the FHB monitoring model. 
In this study, a backpropagation (BP) neural network was used to develop the multivariate FHB 
monitoring model. The BP neural network is a multilayer feedforward neural network. In general, 
it has three layers: an input layer, a hidden layer, and an output layer [47]. The training process of 
the BP neural network follows two steps: in the first step, variables are assigned to the input layer, 
and the outcome is calculated through the weighted sum of the hidden layer; in the second step, the 
error of the outcome is transferred from the output layer to the input layer, and the weights and 
biases of variables are adjusted to decrease the error of the outcome. When this error is reduced to 
0.1, the training of the neural network is completed. 

However, the training process of the BP neural network is a local search mechanism, and it 
may lead to trapping of the BP neural network in the local optimum. To avoid this problem, the 
simulated annealing algorithm was integrated into the BP neural network. The simulated annealing 
algorithm is a greedy algorithm, which lets the algorithm escape from the local optimum by 
accepting values that increase the error [48]. Figure 6 shows the structure of the improved BP neural 
network. In addition, the Akaike information criterion (AIC) was used to evaluate the complexity 
and accuracy of the multivariate FHB monitoring model. The AIC is a model evaluation index that 
comprehensively considers the number of model parameters, the number of samples, and the 
monitoring accuracy. The larger the AIC, the better the model [49]. 

 
Figure 6. General overview of the improved backpropagation (BP) neural network. 

In addition, five commonly used methods, including partial least square regression (PLSR), 
Fisher’s linear discriminant analysis (FLDA), logistic regression (LR), random forests (RFs), and 
SVM, were compared with the improved BP neural network. The existing methods were widely 
utilized to monitor disease outbreaks, and Table 3 presents detailed descriptions for these. 
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Table 3. Detailed descriptions of five methods used in this study. 

Abbreviation Full Name Description Reference 

PLSR Partial least square regression 

A statistical method that identifies a 
linear regression model by projecting 

the predicted variables and the 
observable variables to a new space. It 
has proven to be the most widely used 

linear regression technique for 
estimating soil attributes, disease 

severity, photosynthetic capacity, etc. 

[38,40] 

FLDA Fisher’s linear discriminant analysis 

A method used in statistics, pattern 
recognition, and machine learning to 

identify a linear combination of 
features that characterizes or separates 
two or more classes of objects. In recent 
studies, it has been used to model the 

relationship between spectral 
reflectance and crop disease severity. 

[50,51] 

LR Logistic regression 

A statistical method that can be used to 
describe the relationship between a 

dependent variable and multiple 
independent variables. It is less affected 

by the non-normality of variables. 
Recently, some studies have found that 

models developed using logistic 
regression had a better performance in 
remote sensing monitoring of banana 
fusarium wilt and wheat yellow rust. 

[16,52] 

RFs Random Forests 

An ensemble learning method for 
classification via constructing a 

multitude of decision trees in the 
training process and outputting the 

result according to the predictions of 
individual trees. It has proven to be an 
effective method in crop type mapping, 

vegetation biomass estimating, etc. 

[53,54] 

SVM Support vector machine 

A supervised learning model that 
divides the examples of separate 

categories by a clear gap that should be 
as wide as possible. It has been used in 

wheat yellow rust detection, wheat 
powdery mildew monitoring, etc. 

[55,56] 

3. Results 

3.1. Evaluation of the Univariate Monitoring Model 

Table 4 shows the AUC and corresponding standard deviation (Std) of the univariate FHB 
monitoring model developed using features. Table 4 shows the first five original spectral bands 
with better performances, and the sensitivity and specificity of the optimal threshold of each feature 
were also included. In general, the modified chlorophyll absorption reflectance index (MCARI) 
performed best among all features with AUC and Std values of 1.0 and 0.0, respectively. Band 50 
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(650 nm) and Band 60 (690 nm) had the same AUC and Std, whereas the specificity of Band 50 (650 
nm) was higher than that of Band 60 (690 nm). Texture features had moderate performances 
compared with other features, and they had the highest Std. 

Table 4. Evaluation results of the univariate monitoring model. 

  Mean AUC Std Sens. Spec. 

Spectral bands 

Band 50 (650 nm) 0.99 0.01  0.94 0.98 
Band 55 (670 nm) 0.98 0.01  0.90 1.00 
Band 60 (690 nm) 0.99 0.01  0.94 0.94 
Band 70 (730 nm) 0.92 0.03  0.88 0.84 
Band 80 (770 nm) 0.82 0.04  0.82 0.74 

Vegetation indexes 

PRI 0.19 0.04  — — 
PhRI 0.06 0.02  — — 
NRI 0.67 0.05  0.52 0.86 

NDVI 0.07 0.02  — — 
MSR 0.07 0.02  — — 

MCARI 1.00 0.00  0.98 1.00 
GI 0.75 0.05  0.58 0.84 

TVI 0.73 0.05  0.86 0.50 
TCARI 0.76 0.05  0.76 0.76 
RVSI 0.21 0.05  — — 
PSRI 0.29 0.05  — — 

Texture features 
LBP(8,1) 0.40 0.06  0.18 0.94 
LBP(8,2) 0.47 0.06  0.22 0.92 
LBP(16,2) 0.40 0.06  0.12 0.94 

Figure 7 shows the optimal thresholds and values of samples of the univariate FHB monitoring 
model. The yellow dots represent slightly diseased samples, red dots represent severely diseased 
samples, and the black dotted line indicates the optimal threshold. For features with higher AUC, 
sensitivity, and specificity (i.e., MCARI), two types of samples were more separable. In contrast, for 
features with lower AUC, sensitivity, and specificity (i.e., LBP(8,1)), two types of samples were 
difficult to separate. Moreover, a number of features had similar optimal thresholds, such as Band 
50 (650 nm) and Band 55 (670 nm). This may be because of the similar spectral reflectance of the 
wheat canopy in 650 and 670 nm. 
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Figure 7. Optimal thresholds and values of samples for the univariate monitoring model. 

3.2. Evaluation of the Multivariate Monitoring Model 

When developing the multivariate FHB monitoring model using an improved BP neural 
network, all features in Section 3.1 were used as input first. These include five original spectral 
bands, 11 vegetation indexes, and three texture features. Then, backward feature selection was used 
to filter these features. Table 5 shows the features and AIC values of the multivariate FHB 
monitoring model before and after backward feature selection. Only seven of 19 original features 
remained after backward feature selection, and the AIC of the multivariate FHB monitoring model 
decreased from −362.3 to −500.64, indicating systematic improvement of the power of explanation. It 
should be noted that the modified simple ratio (MSR) performed worse in Section 3.1 (with AUC of 
0.07) while it was contained in the feature set after backward feature selection. The reason was that 
the MSR contained useful information for FHB monitoring and realized a complementing effect 
with other features. 
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Table 5. Feature variables and Akaike information criterion (AIC) of the models before and after 
backward feature selection. 

Type of Model List of Variables Parameter Value 

Model with all features 

PRI + PhRI + NRI + NDVI + MSR 
+ MCARI + GI + TVI + TCARI + 
RVSI + PSRI + Band 50 (650 nm) 

+ Band 55 (670 nm) + Band 60 
(690 nm)+Band 70 (730 nm) + 
Band 80 (770 nm) + LBP(8,1) + 

LBP(8,2) + LBP(16,2) 

Mean AIC −362.30  

Number of 
variables 

19 

Model with simplified 
features 

NRI + MCARI + MSR + GI + TVI 
+ LBP(8,2) + Band 50 (650 nm) 

Mean AIC −500.64  
Number of 
variables 7 

Gain (% AIC 
reduction) 38.1 

The test set was used to evaluate the performance of models developed using the improved BP 
neural network, PLSR, FLDA, LR, RFs and SVM, and the test results were exhibited in the form of a 
confusion matrix (Table 6). This confusion matrix, also known as an error matrix, is a matrix with 
two rows and two columns. Values of producer accuracy, user accuracy, overall accuracy, and 
Kappa coefficient were applied to the confusion matrix. The overall accuracy indicated the general 
classification performance of the classifier on the test set. The Kappa coefficient was used to 
quantify the consistency between the real classes and classification results of samples. The producer 
accuracy represents the number of classified reference samples that were accurately divided by the 
total number of reference samples for that class. The user accuracy was calculated by dividing the 
total number of correct classifications for a particular class and by the row total. Table 6 shows that 
the FHB monitoring model that was developed using an improved BP neural network achieved the 
highest overall accuracy of 98%. Moreover, the difference of producer accuracy and user accuracy 
of the improved BP neural network was smallest among all models, indicating that this model had 
superior stability. With regard to the models that were developed using five commonly used 
methods, FLDA, RFs, and SVM achieved the same overall accuracies. However, the difference of 
producer accuracy and user accuracy in FLDA was larger than in the other two methods. The 
higher producer accuracy of severely diseased samples of FLDA indicated that it tended to 
misclassify slightly diseased samples as severely diseased samples. LR had the lowest overall 
accuracy, producer accuracy, and user accuracy, indicating that it performed worst in 
distinguishing between slightly and severely diseased wheat canopies. 
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Table 6. Overall verification results of five commonly used algorithms and improved BP neural 
network. 

  Reference User 
Accuracy 

(%) 

Overall 
Accuracy 

(%) 
Kappa   Slightly 

Diseased 
Severely 
Diseased 

Sum 

Improved BP neural 
network 

Slightly 
diseased 

49 1 50 98 

98 0.96 
Severely 
diseased 

1 49 50 98 

Sum 50 50 100  

Producer 
accuracy (%) 98 98   

PLSR 

Slightly 
diseased 45 4 49 92 

91 0.82 
Severely 
diseased 5 46 51 90 

Sum 50 50 100  

Producer 
accuracy (%) 90 92   

FLDA 

Slightly 
diseased 45 0 45 100 

95 0.9 
Severely 
diseased 5 50 55 91 

Sum 50 50 100  

Producer 
accuracy (%) 

90 100   

LR 

Slightly 
diseased 

45 5 50 90 

90 0.8 
Severely 
diseased 

5 45 50 90 

Sum 50 50 100  

Producer 
accuracy (%) 90 90   

RFs 

Slightly 
diseased 46 1 47 98 

95 0.9 
Severely 
diseased 4 49 53 92 

Sum 50 50 100  
Producer 

accuracy (%) 92 98   

SVM 

Slightly 
diseased 46 1 47 98 

95 0.9 
Severely 
diseased 4 49 53 92 

Sum 50 50 100  

Producer 
accuracy (%) 

92 98   

Based on the overall verification results shown in Table 6, the model developed using the 
improved BP neural network was chosen to monitor the severity of wheat canopy effects in the 
experimental field. The monitoring result is shown in Figure 8. 
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Figure 8. The monitoring result of wheat Fusarium head blight (FHB) using the improved BP neural 
network. (a) FHB monitoring result for 3 May 2019, and (b) FHB monitoring result for 8 May 2019. 
The yellow color represents slightly FHB-infected wheat canopies, and the red color represents 
severely FHB-infected wheat canopies. The photos in (a,b) on the right are canopy photos of the 
sample plot. 

4. Discussion 

Hyperspectral images from UAVs have been used to monitor vegetation pests and diseases in 
many studies. Some people tried to detect pests in vineyards by combining UAV hyperspectral 
images with ground data. The vegetation indexes that were sensitive to the pest were calculated, 
and the pest monitoring model was developed based on these indexes [57]. The approach proposed 
in this study also combined the UAV hyperspectral imagery with ground survey data. Considering 
that wheat FHB could change the structure and shape of a wheat canopy, this study added texture 
features to the spectral features as inputs for the monitoring model. There has also been some 
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research attempting to apply deep learning to monitor pests and diseases using UAV hyperspectral 
imagery [26,58,59]. The monitoring accuracies achieved in these studies were generally high, but 
the poor interpretability of the extracted features makes it difficult to apply the model to other 
regions. This study combined plant pathology and remote sensing disease monitoring mechanisms 
to select the features, and the proposed model can be easily applied to areas that are similar to the 
experimental field. 

Early attempts were made to apply remote sensing techniques to the monitoring of wheat FHB 
[60]. However, given the demands of production, most of the research only applied remote sensing 
technology to detect FHB in wheat kernels [61,62]. These studies attempted to extract the spectral 
characteristics of diseased wheat kernels through spectral indices, principal component 
transformations, and other methods, and thus constructed monitoring models. Consistently with 
these studies, different vegetation indices exhibited different traits when monitoring FHB in this 
paper. In recent years, some studies attempted to identify diseased areas of spikelet through 
multispectral or hyperspectral images taken in wheat fields [8,63,64]. They found that the 
wavelengths near 650 nm were sensitive to wheat FHB, which is consistent with the findings of this 
study. However, the target areas of these studies were small, and the models constructed did not 
meet the need for accurate monitoring of wheat FHB in a wheat field. This study combined spectral 
and textural features to construct a model for the monitoring of FHB at field scale, extending the 
previous models in terms of feature types and monitoring area. It is worth noting that, in this study, 
univariate monitoring models developed using texture features had moderate mean AUCs; this 
may be largely due to the lower spatial resolution of images, and this also indicated that utilizing 
texture features alone for FHB monitoring at the field scale is not sufficient. 

The combination of the simulated annealing algorithm and BP neural network has been used 
in many remote sensing applications, such as air quality prediction, traffic flow forecasting, rock 
mass parameter prediction, etc. [65–68]. These studies found that the model constructed by this 
method was able to achieve higher monitoring accuracy than the BP neural network. In this study, 
the improved BP neural network performed better than five commonly used algorithms. The 
producer accuracy and user accuracy of the improved BP neural network in slightly and severely 
diseased samples exceeded 95%, and kappa was 0.96. This superior performance of the improved 
BP neural network was likely the result of two features. The relationship between features (i.e., 
original spectral bands, vegetation indices, and texture features) and the severity of FHB was 
complex, and the improved BP neural network has the ability to generate complex decision 
boundaries in the feature space. In addition, the improved BP neural network was proposed by 
integrating a simulated annealing algorithm into the BP neural network. Therefore, it could avoid 
becoming trapped in the local optimum, and offers the advantages of the BP neural network to 
effectively avoid overfitting of the data. 

In Section 3.2, the improved BP neural network was used to monitor the severity of FHB 
infection of wheat canopies in the experimental field, and the monitoring results of 3 and 8 May are 
shown in Figure 5. It was obvious that the area of severely diseased wheat canopies increased 
rapidly from 3–8 May. Considering that no measures had been taken to prevent FHB in the 
experimental field, the conclusion can be drawn that the spreading of Fusarium graminearum would 
be rapid if no preventive measures were taken at the grain filling stage. 

Although this study yielded satisfactory results for wheat FHB monitoring, there are still some 
weaknesses that need to be improved in future research. First, the number of plots was small in this 
study due to the high cost in the process of plot data collection. The small plot size led to the lack of 
a model validation process based on real independent data. Limited training data are a common 
problem in remote sensing applications [56], and many approaches have been used to mitigate 
small training samples, including data augmentation, unsupervised training, and transfer learning 
[69]. Future research could attempt to use these methods to overcome the problem of small plots 
and thus develop a more stable and efficient monitoring model. Second, the monitoring model 
proposed in this study is a binary classification approach based on multiple features. In order to 
make the monitoring results more instructive, future studies could assess the uncertainty of 
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classification and improve the model based on the characteristics of the pixels with greater 
uncertainty. 

In addition, a number of limitations and challenges still remain when applying the proposed 
approach in monitoring wheat FHB. Firstly, the crop cultivars, cultivation procedures, and 
management practices of the experimental field were uniform. When the proposed approach is 
applied to wheat fields with different wheat cultivars, cultivation procedures, or management 
practices, the features that performed well in this study may not be applicable. However, the idea of 
wheat FHB monitoring based on spectral and textural features is still valid. Future research could 
validate the proposed approach in wheat fields with different wheat cultivars, cultivation 
procedures, or management practices. Secondly, FHB was the only disease of wheat in this 
experimental field; thus, it remains unclear whether the features used in this study (i.e., original 
spectral bands, vegetation indexes, and texture features) are effective for monitoring the severity of 
FHB in cases where this disease is accompanied by other wheat diseases. Thirdly, it is not clear 
whether this approach will perform well when distinguishing slightly and severely infected wheat 
canopies from other vegetation and non-vegetation classes. Future research could evaluate the 
ability of this approach in distinguishing wheat from other classes. In addition, the hyperspectral 
images from the UAV and field plots were acquired at the grain filling stage; thus, the performance 
of the multivariate FHB monitoring model at other stages of the FHB infection needs to be 
evaluated by future research. 

In this study, the hyperspectral images from a UAV were used to monitor the severity of FHB. 
Many studies have attempted to use RGB images for detection of wheat FHB because UAV RGB 
imagery has advantages in terms of cost and coverage [70–72]. However, Dammer et al. (2011) 
found that bands other than red, green, and blue contain some useful information for FHB 
monitoring [73]. Moreover, when the symptoms are completely exhibited, the observation of FHB is 
too late for preventative measurement. Therefore, it is important to detect FHB in the early stages. 
The symptoms are hard to observe in the RGB images in the early stages, though acquiring rich 
spectral information on the wheat canopy is more important for FHB monitoring. Future research 
could compare the performance of UAV RGB images and UAV hyperspectral images on the 
monitoring of FHB in different stages. Currently, UAV imagery is suitable for FHB monitoring in a 
smaller area, while satellite imagery would be more appropriate when carrying out FHB 
monitoring in large areas. However, when monitoring FHB in large areas, due to the lower spatial 
resolution of satellite imagery and large regional variation, some natural and economic factors, such 
as temperature, humidity, and management practices, do have a significant impact on the 
occurrence of the disease. It could be useful to extract these factors when monitoring the occurrence 
of the disease in large area. 

5. Conclusions 

Hyperspectral images from UAVs offer valuable and reliable data for wheat FHB monitoring 
in the field. This study achieved accurate monitoring of wheat FHB by utilizing spectral features 
and texture features of UAV hyperspectral images. After obtaining hyperspectral images, three 
types of features (including original spectral bands, vegetation indexes, and texture features) were 
extracted. Based on these features, univariate FHB monitoring models were developed to evaluate 
the ability of each feature to identify different levels of severity of wheat FHB. Then, the 
multivariate FHB monitoring model using an improved BP neural network was developed based 
on the most sensitive features. To decrease the complexity and avoid overfitting of the model, a 
backward feature selection was applied before model development. Five commonly used methods 
(i.e., PLSR, FLDA, LR, RFs, and SVM) were used to establish the monitoring model, and the results 
were compared with those of the improved BP neural network. This comparison showed that the 
improved BP neural network performed best among all tested models, with overall accuracy of 98% 
and kappa of 0.96. This study provides a reference for wheat FHB monitoring via hyperspectral 
UAV images. The approach proposed in this study extends the previous models in terms of feature 
types and monitoring area. However, the limited plots have some effects on model development 
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and validation. Future research could attempt to use data augmentation, unsupervised training, 
and transfer learning to overcome the problem. Moreover, future research should explore the 
performance of this method in fields with different wheat cultivars, in fields with multiple diseases, 
and in fields with wheat at other growth stages. In addition, more features (such as soil type, 
cultivation procedures, and management practices) should be considered in future research to 
develop a more robust and more reliable wheat FHB monitoring model. 
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