
182   March, 2020                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                          Vol. 13 No. 2   

 

Detection of scab in wheat ears using in situ hyperspectral data and 

support vector machine optimized by genetic algorithm 

 
Linsheng Huang1

, Hansu Zhang1,2
, Chao Ruan1,2

, Wenjiang Huang1,2*
,  

Tingguang Hu1,2
, Jinling Zhao1 

(1. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, China; 

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China) 

 

Abstract: A new method was proposed to extract sensitive features and to construct a monitoring model for wheat scab based 

on in situ hyperspectral data of wheat ears to achieve effective prevention and control and provide theoretical support for its 

large-scale monitoring.  Eight sensitive features were selected through correlation analysis and wavelet transform.  These 

features were as follows: three original bands of 350-400 nm, 500-600 nm, and 720-1000 nm; three vegetation indices of 

modified simple ratio (MSR), normalized difference vegetation index, and structural independent pigment index; and two 

wavelet features of WF01 and WF02.  By combining the selected sensitive features with support vector machine (SVM) and 

SVM optimized by genetic algorithm (GASVM), a total of 16 monitoring models were built, and the monitoring accuracies of 

the two types of models were compared.  The ability of the monitoring models built by GASVM to identify scab was better 

than that of SVM algorithm under the same characteristic variables.  Among the 16 models, MSR combined with GASVM had 

an overall accuracy of 75% and a Kappa coefficient of 0.47.  GASVM can be used to monitor wheat scab and its application 

can improve the accuracy of disease monitoring. 
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1  Introduction

 

Wheat is one of the three major grains in the world, and wheat 

diseases have become the focus of research worldwide.  Scab is a 

worldwide epidemic disease caused by Fusarium asiaticum and F. 

graminearum that mainly occurs in warm and humid areas.  It 

decreases wheat yield and produces the deoxynivalenol toxin.  

This toxin can cause poisoning and even death of humans and 

animals.  If the disease is not monitored and controlled in time, it 

will cause a large-scale reduction in wheat yield and degradation of 

grain quality, thereby resulting in economic losses[1].  Therefore, 

the problem of scab must be addressed.  

Traditional monitoring methods, such as on-site sampling 

analysis, are mainly performed by plant pathologists or experts.  

Such methods are costly, time consuming, and labor-intensive; they 

are also unsuitable for large-area applications[2].  Remote sensing 

has the characteristics of multiscale and multi-time resolution.  In 

recent years, it has been widely used in crop growth and area 
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monitoring and production forecasting[3].  Hyperspectral remote 

sensing technology is one of the greatest achievements in the 

development of remote sensing technology in the late 20th century.  

It is applied by an increasing number of scholars who are involved 

in crop disease research because of its rich band information.  

Hyperspectral technology can obtain continuous spectral curves 

with spectral resolutions up to the order of nanometers, and its 

ability to recognize features is strong[4].  Many researchers use 

hyperspectral imaging technology to directly identify the disease of 

crop kernels.  For example, Delwiche and Kim[5,6] identified scab 

in wheat kernels by using a custom-made hyperspectral imaging 

system and near-infrared hyperspectral system (1000-1700 nm).  

Liang et al.[7] used hyperspectral technology to identify infected 

kernels via spectral analysis and pattern processing.  The scab 

identification model constructed by support vector machine (SVM) 

and back propagation neural network achieved excellent results and 

an accuracy of more than 90%.  Ewa et al.[8] constructed a 

classification model based on texture parameters of hyperspectral 

images to identify infected kernels, and ventral kernels were 

classified with 100% accuracy.  These studies all achieved good 

results, and they all directly identified the infected or uninfected 

kernels through hyperspectral technology in the laboratory.  

However, they excluded the influence of various factors, such as 

field conditions, weather, and leaves.  Thus, they achieved ideal 

research results.  Studies[9] have demonstrated that leaf area index, 

chlorophyll content, and aboveground biomass are the main indices 

affecting scab occurrence.  Li et al.[10] directly used non-imaging 

hyperspectral technology to conduct canopy-scale research from 

the practical perspective of wheat growth conditions.  A remote 

sensing estimation model of scab was established based on spectral 

reflectance data, climatic factors, and growth parameters, and this 
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model was used to provide a reference for the information 

acquisition of disease prevention and monitoring for winter wheat 

production in Yangze and Huai river region.  A single wheat ear 

in the field contains purer spectral information, which can provide 

a theoretical basis for canopy studies and even large-scale research.  

Therefore, some researchers directly studied scab on a single wheat 

ear.  Huang et al.[11] directly measured the spectrum of a single 

wheat ear by using non-imaging hyperspectral technology, 

established an effective disease severity recognition model by 

performing Fisher’s linear discriminant analysis and SVM based on 

radial basis function (RBF), and identified scab on a single wheat 

plant in the front, side, and upright directions.  Non-imaging 

remote sensing technology also has great potential in the 

monitoring of wheat scab.  However, most previous studies 

focused on wheat powdery mildew, stripe rust, or aphids; few 

studies were conducted on scab[11].  Therefore, the present study 

aimed to use the non-imaging hyperspectral technique to identify 

wheat scab on the ear scale.   

SVM is a model construction method based on statistical 

theory.  It is typically used in pattern recognition, classification, 

and regression analysis[12].  It first constructs the optimal hyperplane 

to minimize the classification error.  Then, it transforms the input 

space into a high-dimensional space by nonlinear transformation of 

the appropriate kernel function to find the optimal classification 

surface in the new space[13].  However, effectively selecting the 

kernel function and determining the parameters when using this 

algorithm are still controversial.  The traditional grid search 

algorithm is inefficient, computationally intensive, time consuming, 

and produces an unsatisfactory effect.  Genetic algorithm (GA) is 

good for solving global optimization problems; it has strong 

robustness and a simple process[14].  GA has been widely used in 

various studies, such as face and text recognition. 

SVM optimized by genetic algorithm (GASVM) has been 

applied to the monitoring and identification of wheat diseases[14], 

but it has not been used for wheat scab.  Hence, this study aimed 

to do the following: (1) analyze the spectral information of wheat 

ears measured by a non-imaging spectrometer and select the 

spectral features that are sensitive and significantly different from 

disease severity; and (2) establish effective models for identifying 

wheat scab by using SVM and GASVM algorithms and prove that 

the GASVM algorithm is more conducive to the information 

detection of scab. 

2  Materials and methods 

2.1  Study site 

Scab is sensitive to humidity and temperature, and it often 

occurs in temperate regions where the climate is warm, moist, and 

rainy[10].  Guohe Town (31º29′N, 117º13′E), Baihu Town 

(31º14′N, 117º27′E), and Shucheng County (31º32′N, 116º59′E) in 

Anhui Province were selected as the research sites (Figure 1), and 

the field spectrum acquisition time was May 2018.  The average 

temperature is 14°C-17°C, and the annual rainfall is 770-     

1700 mm[15].  This is the proper temperature and the sufficient 

amount of moisture suitable for scab occurrence.  Hyperspectral 

data were measured during the grain filling stage of wheat, which is 

an important period for scab detection. 

 
Figure 1  Location of the study area 

 

2.2  Data acquisition 

The statistical results of the wheat ear samples measured in the 

field are shown in Table 1.  The analytical spectral device 

FieldSpec Pro full range spectrometer (350-2500 nm) was used to 

collect spectral information.  Its spectral resolution was 3 nm 

within the 350-1000 nm range and 10 nm within the 1000-2500 nm 

range[11].  All in situ hyperspectral data were measured in a 

windless, cloudless, and sunny environment from 10:00-14:00.  

To eliminate the interference of other wheat ears, we cut a hole in 

the center of a 1 m×1 m black cloth, inserted the wheat ear 

vertically into the black cloth, and placed the probe of the 

spectrometer on top of the ear to measure the spectrum.  Each ear 

was measured 10 times, and a 40 cm×40 cm BaSO4 calibration 

panel was used for spectrum correction before each measurement.  

The average value of the 10 measurements was recorded.  All 

spectral curves were resampled at 1 nm intervals before 
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pretreatment.  The spectral reflectance could be obtained by 

calculating the ratio of radiation brightness between wheat ears and 

panel radiation.  The calculation formula is as follows: 

1
1 2

2

DN
R R

DN
   (1) 

where, R1 is the target spectral reflectance; DN1 is the gray value of 

the target spectrum; DN2 is the gray value of the calibration panel, 

and R2 is the calibration panel reflectance. 
 

Table 1  Number of healthy and diseased samples collected 

Number of samples collected 

Total number Number of healthy samples Number of diseased samples 

72 24 48 
 

2.3  Assessment of disease severity 

According to the rules for monitoring and forecast of the wheat 

head blight (GB/T15796-2011), disease severity is the proportion 

of diseased spikelets (ear rot, decay, etc.) to the total number 

spikelets.  The grading standards of wheat scab occurrence 

severity are shown in Table 2, and the samples of levels 0-4 were 8, 

16, 11, 20, and 17, respectively.  In order to reduce the difficulty 

of identifying the severity of the disease, the severity of scab was 

further reclassified into a healthy class and diseased class.  Given 

that the infected wheat ears in levels 0 and 1 were difficult to 

distinguish, we classified the level 1 samples as healthy wheat ears, 

and the level 2-4 samples were divided into infected wheat ears. 
 

Table 2  Severity grading of wheat scab occurrence 

Level The proportion of diseased spikelets to all spikelets 

0 0 

1 0-1/4 

2 1/4-1/2 

3 1/2-3/4 

4 3/4-1 
 

2.4  Data analysis 

2.4.1  Selection of vegetation indices 

Vegetation index-based analysis is a major approach for 

studying and practicing remote sensing of pests and diseases.  

According to the spectral characteristics of crops under stress, 

researchers have constructed a variety of vegetation indices for 

monitoring crop diseases and insect pests[16].  To determine the 

sensitive features of physiological and biochemical changes 

induced by scab, we selected 10 vegetation indices (Table 3) that 

were combined and transformed by different wavebands as the 

primary feature sets of the monitoring model and discussed their 

applicability in assessing scab.  These indices were as follows: 

modified simple ratio (MSR) and normalized difference vegetation 

index (NDVI) related to biophysical pigments; nitrogen reflectance 

index (NRI) related to water and nitrogen content; photochemical 

reflectance index (PRI) and physiological reflectance index (PhRI) 

related to photosynthetic activity; ratio vegetation stress index 

(RVSI) related to cell structure; and structural independent pigment 

index (SIPI), normalized pigment chlorophyll index (NPCI), 

anthocyanin reflectance index (ARI), and triangular vegetation 

index (TVI) related to pigment variation. 

2.4.2  Wavelet transform 

Wavelet transform can realize data filtering and de-noising.  

It has multiresolution characteristics.  Each channel can obtain 

local detail features of the data by adopting multichannel filtering, 

which highlights the sensitive information of the data.  Therefore, 

the utilization of spectral information is optimized to some 

extent[12]. 
 

Table 3  Characteristics of vegetation indices 

Vegetation index Formula Reference 

Modified Simple Ratio (MSR) 
(ρ800/ρ670 − 1)/ 

(ρ800/ρ670 + 1)
1/2

 
[17,18] 

Normalized Difference Vegetation Index 

(NDVI) 
(ρ840 − ρ675)/(ρ840 + ρ675) [19] 

Nitrogen Reflectance Index (NRI) (ρ570 − ρ670)/(ρ570 + ρ670) [20] 

Photochemical Reflectance Index (PRI) (ρ570 − ρ531)/(ρ570 + ρ531) [21] 

Structural Independent Pigment Index 

(SIPI) 
(ρ800 − ρ445)/(ρ800 − ρ680) [22] 

Physiological Reflectance Index (PhRI) (ρ550 − ρ531)/(ρ550 + ρ531) [23] 

Normalized Pigment Chlorophyll Index 

(NPCI) 
(ρ680 − ρ430)/(ρ680 + ρ430) [24] 

Anthocyanin Reflectance Index (ARI) (ρ550)
-1 

− (ρ700)
-1

 [25] 

Ratio Vegetation Stress Index (RVSI) [(ρ712 + ρ752)/2] − ρ732 [26] 

Triangular Vegetation Index (TVI) 
60(R750 − R550) −  

100(R670 − R550) 
[27] 

 

Gabor wavelet enables simultaneous local analysis of time and 

frequency, thereby analyzing stationary signals easily.  Gabor 

wavelet transform solves the expansion coefficient of Gabor[28].  

In this study, the Gaussian function was adopted as the mother 

wavelet to construct the wavelet kernel function, the vegetation 

index was convoluted with the wavelet kernel function, and the 

amplitude after convolution was used as the modeling feature 

information.  The formula is as follows[29]: 

2 2

2 2

2 2
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       (2) 

where, g(x, y) represents a Gaussian modulation function; σx and σy 

represent the standard deviation on the X and Y axes; h(x, y) 

represents a wavelet function; W is the frequency of the sine 

function on the X-axis; H(u,v) is the Fourier transform; u is the 

frequency of independent variable; v is the amplitude value of the 

frequency signal, and σu and σv are the standard deviations on the U 

and V axes, respectively. 

2 2( , ) ( ) ( )R IS x y h I h I               (3) 

where, (h*I) is the convolution of filter h with data I; hR and hI are 

the real and imaginary parts of filter h, and S(x, y) is the 

characteristic obtained by Gabor filter.  h(x, y) as the mother 

wavelet can be scaled and rotated to obtain a set of self-similar 

filters: 

( , ) ( , )m
mnh x y h x y                  (4) 

where, x′=α−m(xcosθ+ysinθ), y′=α−m(−xcosθ+ysinθ), α>1, θ=nπ/K, 

α−m is scale factors, m=0, 1, ..., t−1, n=0, 1, ..., K−1, and t and K are 

the number of scales and directions, respectively.  In this 

experiment, t = 4, K = 8, and 2  . 

2.4.3  Classification method 

The principle of SVM involves finding an optimal hyperplane 

that satisfies the classification requirements.  The hyperplane 

maintains the classification accuracy and maximizes the interval 

between the two types of classification samples[30].  It is widely 

used in remote sensing classification because of its simple structure, 

strong adaptability, and global optimal characteristics.  The 

discriminant function of the model is as follows: 
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              (5) 

where, αi is the Lagrange multiplier; Sv is the support vector; xi and 

yi are support vectors in two classes; b is the threshold, and k(xi, x) 

is the kernel function.  In this study, RBF was selected as the 

kernel function of SVM. 

How to set the penalty factor and kernel parameter is the 

problem that SVM faces in practical application.  The traditional 

methods of parameter selection are mostly by trial and error.  

Cross-validation is widely used in modeling applications, but this 

method is inefficient and requires a heavy workload.  GA was 

used to optimize the SVM.  The steps are as follows[31]: 

1) The population was initialized. 

2) Select training data and validation data.  Seventy-two 

sample plots in the field were investigated during the study period.  

Forty-two samples were designated as the training samples.  The 

remaining 24 samples were the verification samples. 

3) Using SVM to train and test the data.  The fitness function 

was selected, and the fitness value of each individual was 

calculated. 

4) The maximum genetic algebra (100) of the initial setting was 

assessed if it was satisfied, and the optimal penalty factor and 

kernel parameter were obtained when the condition was met.  

Otherwise, the next step was performed. 

5) Crossover operator and mutation operator were performed to 

form a new generation of individuals.  Step 2 was performed 

again to continue the algorithm’s optimization until the termination 

condition is met to exit the loop. 

6) The parameter-optimized SVM model was used to detect 

wheat scab. 

3  Results and discussion 

3.1  Selection of sensitive features  

3.1.1  Features of spectral reflectance  

Spectral reflectance is the simplest and most direct feature.  

The spectral reflectance signals in visible and near-infrared regions 

reflect the changes in physical and biochemical components caused 

by vegetation stress.  These signals have been widely used in 

remote sensing monitoring and early stress diagnosis of crop 

diseases and pests[16].  Figure 2 shows the spectral reflectance 

curves of healthy and infected wheat ears.  The morphological 

difference between the two spectra was not obvious.  To perceive 

the changes in the spectrum more intuitively, we calculated the 

reflectance ratio between the diseased and healthy wheat ears 

(Figure 3).  The reflectance ratio reached the maximum in the 

500-600 band regions, thereby indicating that the spectral 

reflectance of wheat after stress in this band was greatly improved.  

This result was obtained, because when wheat is under stress, the 

content of chlorophyll decreases and the absorption ability of 

visible regions is weakened, thus, the reflectance at the “green 

peak” increases[4].  Correlation analysis was performed to assess 

whether significant relationships exist between band reflectance 

and disease severity.  In Figure 4, the reflectance of 350-400 nm 

in the visible regions exhibited the highest correlation with disease 

severity, and all correlation coefficients in the near-infrared regions 

(720-1000 nm) were greater than 0.7.  Therefore, the bands of 

500-600 nm with the greatest variation and 350-400 nm and 

720-1000 nm with the largest correlation coefficients in the visible 

and near-infrared regions were selected as the preferred features of 

the original spectral feature set. 

 
Figure 2  Comparison of hyperspectral curves between diseased 

and healthy ears 

 
Figure 3  Curve of reflectance ratios between diseased and healthy 

wheat ears 

 
Figure 4  Correlation coefficient curve between the spectral 

reflectance of infected wheat and disease severity 
 

3.1.2  Vegetation indices 

Vegetation indices based on a certain physiological 

significance can enhance and highlight some spectral changes to 

obtain a more ideal result[16].  Table 4 summarizes the responses 

of all vegetation indices to wheat scab.  Three vegetation indices, 

namely, MSR, NDVI, and SIPI, were significantly correlated 

(p-value < 0.01) with disease severity; the correlation coefficients 

were 0.62, 0.58, and 0.55, respectively.  Other indices did not 

show significant responses to disease severity.  Thus, we chose 

MSR, NDVI, and SIPI as the sensitive vegetation indices. 

3.1.3  Wavelet features 

Three vegetation indices, namely, MSR, NDVI, and SIPI, were 

transformed by wavelet transform.  A total of 32 wavelet kernel 

functions (four scales and eight directions) were constructed, and 

they increased the data dimension by 32 times.  To determine the 

best wavelet features, we analyzed the correlation between wavelet 

features and disease severity and selected the features with 

significant differences (p-value < 0.01) as the sensitive features by 
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t-test.  The scale, direction, and features’ names are shown in 

Table 5. 
 

Table 4  Correlation between vegetation indices and disease 

severity 

Vegetation index R 

MSR* 0.62 

NDVI* 0.58 

NRI 0.04 

PRI 0.54 

SIPI* 0.55 

PhRI 0.26 

NPCI 0.54 

ARI 0.38 

RVSI 0.51 

TVI 0.43 

Note: * Indicates the correlation is significant at the 0.99 confidence level. 
 

Table 5  Wavelet features 

Vegetation index Scale Direction Wavelet feature 

MSR 4 2 WF01 

NDVI 1 0 WF02 
 

3.2  Construction of disease monitoring model 

3.2.1  Construction of monitoring models based on original 

spectrum 

A total of 72 samples were collected in this experiment, among 

which 42 random samples were used as the training samples, and 

the remaining 24 samples were used as the verification samples.  

According to the three bands regions of 350-400 nm, 500-600 nm, 

and 720-1000 nm selected in 3.1.1, the three bands with the largest 

correlation in the three regions were 354 nm, 525 nm, and 761 nm.  

These bands were the input variables, and SVM and GASVM were 

used for the model construction.  The monitoring results, overall 

accuracy (OA), and Kappa coefficient of the six models are shown 

in Table 6. 
 

Table 6  Accuracy analysis of the classification models based 

on original bands  

Feature Model  Healthy Diseased Sum U/% OA/% Kappa 

λ354 

SVM 

Healthy 6 8 14 42.9 

58.3 0.21 
Diseased 2 8 10 80 

Sum 8 16 24  

P/% 75 50   

GASVM 

Healthy 6 7 13 46.2 

62.5 0.27 
Diseased 2 9 11 81.8 

Sum 8 16 24  

P/% 75 56.2   

λ525 

SVM 

Healthy 5 9 14 35.7 

50 0.05 
Diseased 3 7 10 70 

Sum 8 16 24  

P/% 62.5 43.7   

GASVM 

Healthy 5 8 13 38.5 

54.2 0.11 
Diseased 3 8 11 72.7 

Sum 8 16 24  

P/% 62.5 50   

λ761 

SVM 

Healthy 6 8 14 43 

58.3 0.21 
Diseased 2 8 10 80 

Sum 8 16 24  

P/% 75 50   

GASVM 

Healthy 4 4 8 50 

66.7 0.25 
Diseased 4 12 16 75 

Sum 8 16 24  

P/% 50 75   

The accuracy of the monitoring model established by GASVM 

was better than that by SVM algorithm based on the same 

characteristic variables.  In the SVM model, the overall accuracy 

of the monitoring model at 761 and 354 nm, both of which were 

58.3%, was slightly higher than that at 525 nm, whereas the 

monitoring model at the 525 nm band had a monitoring accuracy of 

only 50%.  In the GASVM model, the overall accuracy at 756 nm 

was 4.2% and 12.5% higher than that at 354 nm and 525 nm, 

respectively, but it was only 66.7%, and the Kappa coefficient of 

the model was 0.25.  In general, the overall accuracy of all models 

was not high.  

3.2.2  Construction of monitoring models based on vegetation 

indices 

Three vegetation indices, namely, MSR, NDVI, and SIPI, were 

used as the input variables to build the model.  Table 7 shows the 

results of the models constructed by SVM algorithm and GASVM 

for scab detection.  MSR had the highest identification ability for 

scab, followed by NDVI and SIPI.  With the same input variables, 

the accuracy of the GASVM model was higher than that of the 

SVM model.  The ability of the MSR-GASVM model to detect 

scab was better than that of the other models.  The overall 

accuracy was 75%, and the Kappa coefficient was 0.47.  In 

general, the vegetation index was better at detecting scab than the 

original waveband, because the vegetation index enhances the 

difference between healthy and infected samples by combining and 

transforming band reflectance[32]. 
 

Table 7  Accuracy analysis of the classification models based 

on vegetation indices 

Feature Model  Healthy Diseased Sum U/% OA/% Kappa 

NDVI 

SVM 

Healthy 5 7 12 41.7 

58.3 0.17 
Diseased 3 9 12 75 

Sum 8 16 24  

P/% 62.5 56.3   

GASVM 

Healthy 5 5 10 50 

66.7 0.29 
Diseased 3 11 14 78.6 

Sum 8 16 24  

P/% 62.5 68.8   

MSR 

SVM 

Healthy 5 5 10 50 

66.7 0.29 
Diseased 3 11 14 78.6 

Sum 8 16 24  

P/) 62.5 68.8   

GASVM 

Healthy 6 4 10 60 

75 0.47 
Diseased 2 12 14 85.7 

Sum 8 16 24  

P/% 75 75   

SIPI 

SVM 

Healthy 2 5 7 28.6 

54.2 −0.065 
Diseased 6 11 17 64.7 

Sum 8 16 24  

P/% 25 68.8   

GASVM 

Healthy 6 7 13 46.2 

62.5 0.27 
Diseased 2 9 11 81.8 

Sum 8 16 24  

P/% 75 56.3   
 

3.2.3  Construction of monitoring models based on wavelet 

features 

As discussed in Section 3.1.3, WF01 and WF02 were sensitive 

to scab at ear scale.  We designed four scab identification models 

using these two sensitive features.  Table 8 shows the results of 

discriminating between healthy wheat and wheat infected by scab 
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by using WF0 and WF1.  We can see that the model constructed 

by GASVM had better identification results than the SVM model, 

and the overall accuracy was 70.8%.  For the SVM monitoring 

model, the highest overall accuracy of the verified samples was 

only 62.5%, and the Kappa coefficient was 0.23.  The results 

show the same property as the monitoring model constructed by 

vegetation indices and original wavebands.  The wavelet features 

were superior to waveband features in terms of the ability to 

identify scab, but they were inferior to MSR, thereby indicating 

that the MSR-GASVM model can ideally identify scab-infected 

ears. 
 

Table 8  Accuracy analysis of the classification models based 

on wavelet features 

Feature Model  Healthy Diseased Sum U/% OA/% Kappa 

WF01 

SVM 

Healthy 4 7 11 36.4 

54.2 0.06 
Diseased 4 9 13 69.2 

Sum 8 16 24  

P/% 50 56.3   

GASVM 

Healthy 3 2 17 17.6 

70.8 0.49 
Diseased 5 14 7 20 

Sum 8 16 24  

P/% 37.5 87.5   

WF02 

SVM 

Healthy 5 6 11 45.5 

62.5 0.23 
Diseased 3 10 13 76.9 

Sum 8 16 24  

P/% 62.5 62.5   

GASVM 

Healthy 4 3 7 57.1 

70.8 0.32 
Diseased 4 13 17 76.5 

Sum 8 16 24  

P/% 50 81.3   
 

When wheat is infected by scab, its appearance or internal 

structure changes and shows some differences in spectral 

reflectance and radiation characteristics.  This phenomenon is also 

the fundamental theoretical basis for the identification of wheat 

scab by remote sensing spectroscopy[9].  In addition to selecting 

the appropriate algorithm for feature extraction, choosing the 

suitable modeling method also has a great impact on the 

improvement of the monitoring level of crop diseases[33].  

According to the results obtained in the present study, the 

identifications of disease severity based on GASVM models were 

generally ideal, and the MSR-GASVM model achieved the best 

classification accuracy (75%) in terms of discriminating between 

healthy wheat and wheat infected by scab.  GA has an advantage 

in terms of global optimization of solution space.  SVM 

approximates the nonlinear arbitrarily and establishes an excellent 

nonlinear mapping model with small samples.  It overcomes the 

defects of some traditional intelligent algorithms that easily fall 

into the local minimum and has high stability and robustness in 

prediction and control; however, it has difficulties in kernel 

function or parameter selection[34].  Combining these two 

algorithms is beneficial because they complement each other and 

greatly improve the overall accuracy of the model.  This 

combined model has a higher practical significance than the disease 

recognition model constructed by a single SVM algorithm. 

4  Conclusions 

In this study, we used the non-imaging hyperspectral technique 

to collect spectral information and analyzed the spectral changes in 

wheat ears under stress.  Using the original spectral features, 

vegetation indices, and wavelet features combined with SVM 

algorithm and GASVM to develop wheat scab monitoring models.  

Both model types identified wheat infected with scab, but the 

overall accuracy of the GASVM model was higher than that of the 

SVM model.  The MSR-GASVM model had the best 

identification performance.  The results had relevant implications 

for identifying wheat scab at the ear scale and provided a 

theoretical reference for the further study of the identification of 

scab at the canopy or regional scale. 
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