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Abstract: Canopy chlorophyll content (CCC) is an important indicator for crop-growth monitoring
and crop productivity estimation. The hybrid method, involving the PROSAIL radiative transfer
model and machine learning algorithms, has been widely applied for crop CCC retrieval. However,
PROSAIL’s homogeneous canopy hypothesis limits the ability to use the PROSAIL-based CCC
estimation across different crops with a row structure. In addition to leaf area index (LAI), average
leaf angle (ALA) is the most important canopy structure factor in the PROSAIL model. Under the
same LAI, adjustment of the ALA can make a PROSAIL simulation obtain the same canopy gap as
the heterogeneous canopy at a specific observation angle. Therefore, parameterization of an adjusted
ALA (ALAadj) is an optimal choice to make the PROSAIL model suitable for specific row-planted
crops. This paper attempted to improve PROSAIL-based CCC retrieval for different crops, using a
random forest algorithm, by introducing the prior knowledge of crop-specific ALAadj. Based on the
field reflectance spectrum at nadir, leaf area index, and leaf chlorophyll content, parameterization of
the ALAadj in the PROSAIL model for wheat and soybean was carried out. An algorithm integrating
the random forest and PROSAIL simulations with prior ALAadj information was developed for
wheat and soybean CCC retrieval. Ground-measured CCC measurements were used to validate
the CCC retrieved from canopy spectra. The results showed that the ALAadj values (62 degrees
for wheat; 45 degrees for soybean) that were parameterized for the PROSAIL model demonstrated
good discrimination between the two crops. The proposed algorithm improved the CCC retrieval
accuracy for wheat and soybean, regardless of whether continuous visible to near-infrared spectra
with 50 bands (RMSE from 39.9 to 32.9 µg cm−2; R2 from 0.67 to 0.76) or discrete spectra with
13 bands (RMSE from 43.9 to 33.7 µg cm−2; R2 from 0.63 to 0.74) and nine bands (RMSE from 45.1 to
37.0 µg cm−2; R2 from 0.61 to 0.71) were used. The proposed hybrid algorithm, based on PROSAIL
simulations with ALAadj, has the potential for satellite-based CCC estimation across different crop
types, and it also has a good reference value for the retrieval of other crop parameters.

Keywords: crop chlorophyll; average leaf angle; PROSAIL; machine learning; red edge; radiative
transfer model

1. Introduction

As the primary leaf photosynthesis component, chlorophyll is the most essential factor
to determine the photosynthetic rate and dry matter accumulation [1–3]. The canopy chloro-
phyll content (CCC)—chlorophyll mass per unit of ground area—is the product of the leaf
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area index (LAI) and the leaf chlorophyll content (LCC) expressed in the unit leaf area. CCC
is an important indicator reflecting the crop growth status and the canopy photosynthetic
capacity [4]. The accurate acquisition of crop CCC in large-scale areas is very important for
crop gross primary productivity estimation, field water and fertilizer management, pest
control, and other agricultural applications [4–6]. However, the traditional measurements
of crop chlorophyll, including the destructive laboratory method [7] and nondestructive
field-portable instrument method [8], are inefficient and resource-intensive, meaning they
are not applicable in large areas.

Remote sensing technology has been widely used in the retrieval of vegetation pa-
rameters because of its fast data collection and non-destructive characteristics. Due to the
pigment absorption in the visible band and multiple scattering in the near-infrared band,
the vegetation spectrum shows its unique characteristics in these bands, which makes it
possible to use when monitoring the vegetation chlorophyll status. CCC quantifies total
canopy chlorophyll content and contains both LAI and LCC information. The reflectance
of red-edge bands (700–760 nm) is sensitive to chlorophyll [9] and is commonly used to
retrieve the crop CCC [10,11].

Empirical, machine learning and physics-based approaches are commonly used to
retrieve vegetation CCC [9,12,13]. Through statistical analysis using a vast amount of
experimental data, regression relationships have been established to retrieve CCC from
canopy spectra data [13–15]. Compared to empirical statistical models, machine learning
methods have a stronger learning ability to fit complex nonlinear relationships. Machine
learning methods, such as the support vector machine (SVM), artificial neural network
(ANN), and random forest regression (RFR), have been widely used to retrieve vegetation
parameters [16–19]. Nevertheless, training an SVM with high-dimensional data can be
extremely slow [20], while ANN is prone to overfitting, and the parameter setting in ANN
is more complicated [21]. Compared to SVM and ANN, RFR has proven to be a very
robust machine learning algorithm for the retrieval of vegetation parameters, including the
CCC [21,22]. At the same time, the retrieval models established using empirical methods
or machine learning mostly use local sampled data for training. Although the empirical
retrieval model is accurate for a specific type, a specific area, or a specific time period,
its generalization is poor with regard to the time–space change [20]. In recent years, a
new hybrid retrieval approach involving vegetation radiative transfer models (RTMs) and
machine learning algorithms has been developed to compensate for limited field data [23].
The forward simulation of RTM is an important way to obtain the extensive training data
needed for machine learning and is helpful for obtaining a more robust retrieval model.
The PROSAIL model, a combination of the PROSPECT leaf model [24] and the arbitrary
oblique leaf-scattering (SAIL) canopy model [25], is the most famous canopy reflection
model. As a single-layer homogeneous canopy model, PROSAIL has been widely used for
retrieving crop biochemical and structural variables [26–28].

RTM-based crop-CCC modeling requires attention to the interference of multiple veg-
etation factors, especially canopy structure factors [26,27]. At the canopy level, reflectance
is not only affected by leaf biochemical parameters but is also determined by LAI, leaf incli-
nation distribution, soil background, and other structure factors [29]. The characteristics of
leaf inclination distribution—often simply the average leaf angle (ALA)—are an important
canopy structure parameter that determines canopy spectral behavior. In field observation
experiments and RTM simulation, ALA is an important vegetation structure parameter [30].
Although the sample size based on the SAIL forward model is large, the effects of LAI and
ALA on canopy reflectance are closely related to one another, which makes it difficult to
estimate LAI and ALA information accurately and simultaneously, based on the canopy
spectrum [30,31]. Due to the CCC parameter containing the information of LAI, the vari-
ation in leaf inclination distribution is the main interference factor in the remote sensing
retrieval of the CCC. This means it is necessary to consider prior knowledge of the ALA
parameter in PROSAIL-model-based CCC retrieval for different crop types.
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Introducing the prior knowledge of the ALA parameter in the PROSAIL model is a
way to reduce the uncertainty of CCC retrieval across different crop types. However, there
is a conflict between the homogeneous canopy assumption of SAIL and the actual crop row
structure, which makes it difficult to improve the spectral simulation and retrieval of SAIL
with the prior knowledge of real ALA. In addition to the ALA, the row structure also affects
the proportion of exposed background soil, which is related to the reflectivity of the whole
canopy [32,33]. This leads to the problem of existing differences between the measured
canopy spectra and outputs of the SAIL model even when the field measurement variables
are defined as the inputs of the SAIL model [34,35]. Among the simplified parameters of the
PROSAIL model, ALA expresses the canopy’s geometrical properties. Therefore, the ALA
input may be reasonably adjusted for the PROSAIL model in order to obtain simulated
spectra that are comparable to those of the measured crop spectra [34]. It has been proven
that an adjusted ALA (ALAadj) can be obtained by matching the PROSAIL model with
measured spectra and non-ALA-measured parameters [34]. ALAadj for the PROSAIL model
integrates leaf inclination and canopy heterogeneity information. Compared to in-situ ALA,
ALAadj can better reflect the difference in canopy heterogeneity between different crop
types. Therefore, prior knowledge of ALAadj has the potential to improve the performance
of PROSAIL-based CCC retrieval across crop types. However, research on the application
of ALAadj to vegetation parameter retrieval has not yet been carried out.

The objectives of this study were to use the ALAadj of crops as a prior knowledge input
to improve the performance of RTM-based machine learning algorithms for CCC retrieval
across different crop types. The mature and stable RFR algorithm was used in our work.
Two important food crops, wheat and soybean, were used for algorithm testing. In this
study, we evaluated the significance of ALA and other canopy parameters on crop spectra,
using the PROSAIL model simulation experiment. Meanwhile, ALAadj parameterization of
the PROSAIL model for wheat and soybean was carried out; then, a CCC hybrid retrieval
model integrating prior ALAadj knowledge related to crop types was established. Finally,
the accuracy of the improved retrieval model was evaluated using ground-measured CCC.

2. Data and Methods
2.1. Experimental Areas and Ground Data

In this study, two ground-measured datasets of wheat and soybean were used for
algorithm validation and were taken from experiments carried out in Beijing, China, and
Nebraska, USA, respectively. Table 1 shows the experimental locations of the collected
datasets of wheat and soybean.

Table 1. Details of the study sites and statistics of the measured canopy chlorophyll content (CCC,
µg cm−2) of wheat and soybean.

Sites Lat/Long (◦) Crop Types Sampling Periods Number Mean CCC StDv CV

BJ-XTS 40.18N/116.44E Wheat
04/02~05/17/2002 and
04/14~05/19/2004 and

04/22~05/13/2019
73 147.7 53.9 0.365

US-Ne2 41.17N/−96.47E Soybean 06/13~09/17/2002 and
06/29~09/20/2004 48 101.1 76.5 0.732

US-Ne3 41.18N/−96.44E Soybean 06/19~09/17/2002 25 71.1 38.1 0.727

Lat, latitude; Long, longitude; StDv, standard deviation; CV, coefficient of variation.

2.1.1. Wheat Experimental Area

The Beijing Xiaotangshan experimental area (BJ-XTS) of wheat has a temperate climate.
At this site, field experiment campaigns were carried out in 2002, 2004 (detailed in [36]),
and 2019. The experimental wheat plot was located at the National Station for Precision
Agriculture, Xiaotangshan, Beijing, China. The biophysical parameters of winter wheat
in the growing season were determined. The above wheat experiments covered erecting,
early jointing, late jointing, head emergence, and filling stages. After the erecting stage, the
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canopy changes from open to dense as the wheat grows. In the 2002 campaign, 48 plots
included four water treatment plans, four nitrogen fertilization densities, and three winter
wheat varieties. In the 2004 campaign, 21 winter wheat varieties were planted with non-
differentiated fertilization and irrigation management in 42 plots. In the 2019 campaign,
32 plots were analyzed, with four nitrogen fertilization densities, four fertilization treatment
plans, and two winter wheat varieties.

2.1.2. Soybean Experimental Area

The experimental soybean area consisted of two AmeriFlux sites (US-Ne2 and US-Ne3),
located at the University of Nebraska-Lincoln Agricultural Research and Development
Center near Mead, NE, USA (https://ameriflux.lbl.gov/sites/, accessed on 28 November
2021). The US-Ne2 and US-Ne3 sites were both planted in a maize–soybean rotation model,
with soybean planted in even years. The US-Ne2 site used a center-pivot irrigation system,
while US-Ne3 relied entirely on rainfall for moisture. At the US-Ne2 (2002 and 2004) and
US-Ne3 (2002) sites, six sub-sampling points were randomly designed to obtain spectrum
and biophysical parameters (detailed in [37]).

2.1.3. Ground Data

Table 1 provides detailed information on the ground sample data.

(1) Determination of canopy chlorophyll content

At the BJ-XTS site, fresh leaves of wheat were collected in each 1 m2 plot and then
placed in a chilled box for transport to the laboratory for leaf chlorophyll content measure-
ment (detailed in [38]). The LCC of the sampled leaves was measured by the laboratory
ultraviolet-visible spectrophotometer method given in [7]. Based on the dry weight ratio
of the sub-sample to the total leaf sample, the measured leaf area of the sub-sample was
converted to the LAI at the BJ-XTS site. At the US-Ne2 and US-Ne3 sites, fresh leaves of
soybean were collected; then, the LCC was determined through the standard procedures
(detailed in [15,39]). The LAI was measured using an area meter (Model LI-3100, Li-Cor
Inc., Lincoln, NE, USA). The CCC in the BJ-XTS, US-Ne2, and US-Ne3 sites were calculated
by multiplying the LAI by the LCC.

(2) Canopy reflectance measurements

The ASD FieldSpec spectrometer (Analytical Spectral Devices, Boulder, CO, USA)
was used to obtain the canopy reflectance in the BJ-XTS site. The spectral range of the
spectrometer was 350–2500 nm, and the spectral resolution was 3 and 10 nm in the 350–1050
and 1050–2500 nm ranges, respectively. With a standard reference plate, the canopy spectra
were measured under cloudless conditions from 10 a.m. to 2 p.m. local time. The wheat
canopy spectra were acquired at a field of view of 25◦. In the US-Ne2 and US-Ne3 sites,
the canopy reflectance spectra were measured using the Ocean Optics USB2000 radiometer
(Dunedin Ocean Optics, Dunedin, FL, USA) [40]. The spectral range was 400–1100 nm, with
a spectral resolution of 1.5 nm and a spectral interval of 10 nm. One radiometer measured
the upward-reflected radiation of the crop canopy at a field of view of 25◦. The second
radiometer measured the downward solar radiation with a hemispherical field of view.
The spectrum measurements were obtained under clear sky conditions from 11 a.m. to
2 p.m. local time. Then, the canopy reflectance was calculated from the measured upward
and downward radiation data (detailed in [5]).

The wheat field-measured spectra were sampled in the spectral range and interval
of the soybean spectral data. In order to prevent a bias, the sample size of wheat was
consistent with that of 73 soybean samples, and 73 wheat samples were randomly selected
from all the collected samples (shown in Table 1). The prior ALAadj knowledge of wheat
and soybean was obtained by fitting the PROSAIL model using a random quarter of the
measured samples. The remaining three-quarters of the measured samples were used to
test the performance of our improved CCC retrieval algorithm.

https://ameriflux.lbl.gov/sites/
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2.2. Spectra Simulation
2.2.1. Spectra Simulation of Homogeneous Canopy Based on PROSAIL Model

As an improved version of the PROSAIL model, the PROSAIL-D model, coupled with
the PROSPECT-D leaf model [41] and the 4SAIL canopy model [42], was used to simulate
crop canopy spectrum in the 400–2500 nm wavelength range for training the CCC retrieval
model, with the input parameter settings as in Table 2.

In the leaf parameters of the PROSPECT-D model, the LCC value was set between 10
and 80 µg cm−2. Carotene accounts for 25% of the content of the LCC and changes with the
LCC. The leaf dry matter content (Cm) ranged from 0.003 to 0.006 g cm−2, and the setting
range of the leaf structure parameter (N) was 1.0~2.0. Equivalent water thickness was set
to a fixed value because the water absorption bands are generally not used in the retrieval
of vegetation chlorophyll.

Table 2. Configuration of the input parameters for the PROSAIL-D model simulation.

Parameters Name Units Range

Leaf

LCC Leaf chlorophyll content µg cm−2 10~80
Cm Leaf dry matter content g cm−2 0.003~0.006
Cb Leaf brown pigment content - 0
Cw Equivalent water thickness cm 0.02
Car Leaf carotenoid content µg cm−2 25% LCC
Cant Leaf anthocyanin content µg cm−2 2.0

N Leaf structure index - 1.0~2.0

Canopy

LAI Leaf area index m2 m−2 0.5~8.0
ALA Average leaf angle degrees 10~80

LIDFb Leaf inclination distribution
function parameter b - 0

Rsoil Soil reflectance - As in Figure S1
hotS Hot-spot parameter m m−1 0.05
θs Solar zenith angle degrees 0~60
θv View zenith angle degrees 0
ϕ Sun sensor azimuth angle degrees 0

The canopy structure in the 4SAIL model was defined by the LAI, ALA, soil reflectance,
and hot-spot parameters (shown in Table 2). The LAI value was set between 0.5 and 8. Two
widely used modes of leaf inclination angle distribution function (LIDF), including Camp-
bell’s algorithm [43] and Verhoef’s algorithm [44], have been implemented in multiple
versions of SAIL codes. Horizontal leaves can have higher light interception capabilities,
and a certain number of horizontal leaves is a common state in canopy plants [45]. The
ellipsoid function in Campbell’s algorithm causes the probability density of zero when
the leaf angle is zero or close to zero, which is inconsistent with the actual canopy situ-
ation [46]. Verhoef’s leaf inclination distribution algorithm, using a linear combination
of trigonometric functions, improves this problem [44]. Therefore, Verhoef’s algorithm
with the LIDF parameters was selected for the PROSAIL-D simulation in this study. LIDFa
and LIDFb control the ALA and the distribution bimodality, respectively. The ALA values
in degrees calculated from LIDFa can be expressed as ALA = 45–360 × LIDFa/π2 [44],
ranging from 10 to 80 degrees. Compared to ALA, LIDFb has a very small effect on canopy
reflectance [29], and the setting of LIDFb was fixed at 0. To represent the soil background
variations, the measured spectra of bare and dry soil were multiplied by the brightness
coefficients of five gradients (0.1, 0.25, 0.5, 0.75, and 1), and five soil spectra from light to
dark were determined for the PROSAIL-D simulation. According to the field sampling of
the canopy spectrum at nadir, a fixed observation zenith angle of 0 degrees and the variable
sun angle values were set.
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2.2.2. Spectra Simulation of the Heterogeneous Canopy with Mixed Pixels

The SAIL model as a part of the PROSAIL model is a turbid medium model that
expresses a homogeneous canopy. The SAIL model assumes that the canopy is composed
of extremely small leaves randomly distributed in the horizontal layer [25]. However, the
assumption of homogeneous canopy conditions in the PROSAIL model is inconsistent with
the actual heterogeneity of most row-sown crops. Different crops have different leaf inclina-
tion characteristics, and their planting structures also have large discrepancies. For example,
a canopy of row-planted crops has more soil exposed than a uniform canopy [33,35]. Tak-
ing mixed pixels as a special case of a heterogeneous canopy, the influence of the canopy
heterogeneity factor on reflectance was evaluated in this study.

The spectral linear mixing method [47] was used to fit the reflectance of vegetation-soil
mixed pixels, named Rmixed:

Rmixed = Rveg × (1 − FCsoil) + Rsoil × FCsoil (1)

where Rveg is the reflectance of the pure vegetation-covered endmember based on PROSAIL
simulations, Rsoil is the reflectance of the soil endmember, FCsoil is a fractional cover of the
soil endmember, and the range of FCsoil was set from 0% to 50%.

2.3. Methods

The specific flow chart of the method is shown in Figure 1.
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Figure 1. Workflow of crop canopy chlorophyll content (CCC) retrieval and validation methods used
in the present study. The prior knowledge of an adjusted average leaf angle (ALAadj) is involved in
the PROSAIL-based CCC retrieval model using the random forest regression (RFR) algorithm.

2.3.1. Random Forest

As an advanced machine learning algorithm, random forest is considered to demon-
strate accurate prediction and good fault tolerance [48,49]. We used random forest for
evaluating the influence of ALA and other vegetation parameters on reflectance, as well as
adjusting the ALA for the PROSAIL model, based on measured spectrum and non-ALA
parameters and retrieving CCC by involving the crop-type-related ALAadj. Random for-
est uses many decision trees to train samples and make predictions. A decision tree is a
statistical model of supervised classification that is constructed through the training set
for prediction or classification. Random forest is an improvement of multiple decision
trees, based on the bagging strategy [50]. After selecting samples, k attributes are randomly
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selected from the sample attributes, and then the information gain and Gini index methods
are used to continuously find the best-separated attributes to establish a cart decision tree.
The above process is repeated to establish m classifiers; these decision trees can then be
used to form a random forest, and prediction results can be obtained via averaging.

In fact, random forest is a common method in the field of machine learning, which can
be used for the nonlinear regression of a large amount of data and retrieval of vegetation
parameters, using a radiative transfer model such as PROSAIL. The random forest method
has the following characteristics [51,52]: (1) in the current machine learning algorithms,
it has a fairly high accuracy; (2) it can run effectively on huge datasets; (3) it is able to
process input data with high-dimensional features; (4) it can evaluate the importance of
each variable; (5) it can obtain unbiased estimates of internally generated errors; (6) it can
also give good results for the discrete values of inputs. By using MATLAB software (The
Math Works, Natick, MA, USA) in this study, the simulation dataset was divided into
100 homogeneous subsets, that is, the results of establishing 100 trees were averaged to
achieve the final prediction.

2.3.2. Importance Assessment Method of Vegetation Variables on Canopy Reflectance

The variable importance measures of RFR were used to evaluate the contribution
of different vegetation parameters to reflectance at the visible and near-infrared (NIR)
wavelengths before 900 nm. Random forest is a Bayesian prediction of the decision tree,
which can provide a flexible mapping relationship between input and output and provide
a measure of the importance of variables. In addition to the importance evaluation of
the quantitative input–output relationship, global importance evaluation can be carried
out for situations where the input or output variables are not quantifiable, such as soil
types. Field-measured data have some inherent natural limitations; for example, there is
usually a certain autocorrelation between the LCC and LAI, which is not conducive to the
global importance analysis of ALA on reflectance. Each parameter in the simulation data
can be set to be completely independent, based on the physical model such as PROSAIL,
so it is suitable to carry out an impact contribution evaluation of vegetation variables on
vegetation reflectance [34,53].

In this study, the random forest algorithm is used to train the nonlinear relationship be-
tween parameters and reflectivity at different wavelengths, and to simultaneously calculate
the importance of all independent variables versus dependent variables. Leaf and canopy
parameters, including the LCC, N, Cm, LAI, Rsoil, ALA, and FCsoil, are the independent
variables, while the PROSAIL-simulated reflectance for the homogeneous canopy case and
the mixed pixels cases act as the dependent variable.

2.3.3. PROSAIL Parameterization Scheme of ALAadj Based on Measured Spectrum and
Non-ALA Parameters

The same LAI corresponds to a larger soil fraction under a spatially heterogeneous
canopy than that under a homogeneous canopy [54]. ALA variation changes the gap
of the homogeneous canopy in a specific observation direction [25,54,55], which leads
to the ALAadj being used to make the PROSAIL model suitable for the use of spatially
heterogeneous canopy cases. The conceptual diagram in Figure 2 describes the role of
ALAadj in improving the applicability of the PROSAIL model on a homogeneous canopy. In
Figure 2a, we simplified the homogeneous canopy as a leaf completely covering the ground,
and the leaf angle is ALA. For the special case shown in Figure 2a, the corresponding
ground area covered by the leaf is calculated based on ALA, as below:

LA ∗ cos(ALA) = A (2)

where A is the ground area; LA is the leaf area, here, LAI = LA/A. Figure 2b shows that, in
the case of a mixed pixel canopy with the same LAI, the leaf clumping effect causes a gap
fraction of the soil endmember. The gap fraction of the soil endmember is a. In fact, a/A
is equivalent to FCsoil, the ratio of soil endmember in a mixed vegetation-soil pixel. The
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limitation of the PROSAIL model to simulate heterogeneous canopy reflectance may affect
the performance of a PROSAIL-based hybrid model of CCC retrieval. Figure 2c shows that
the homogeneous canopy case with the leaf angle adjusted to ALAadj has the same gap
fraction as the heterogeneous canopy case in Figure 2b. The ground area, calculated based
on ALAadj in Figure 2c, can be determined as below:

LA∗ cos
(

ALAadj) + a = A (3)

where a is the same soil gap as that in Figure 2b. Figure 2c shows that the ALAadj can
compensate for the increase in soil gap caused by the leaf aggregation effect at a specific
observation direction, which may make the PROSAIL-simulated spectrum more consistent
with that of an actual row-planted canopy.
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Through fitting the PROSAIL simulations with the measured spectrum, and non-ALA
parameters such as LAI, the ALA can be adjusted [34]; that is, the prior ALAadj knowledge
for wheat and soybean can be obtained. The prior ALAadj knowledge for one crop type is
simply characterized by the average ALAadj. Inversion of the PROSAIL model generally
obtains the fitted parameters to match the measured data through three ways: the iterative
optimization, based on the forward programming of the physical model, the look-up
table (LUT), and the machine learning method. Compared to the program loop call, LUT
improves the calculation speed and avoids the risk of converging to local minima [56],
while the machine learning approach saves abundant storage space compared to the LUT
approach [32].

In this study, the RFR was used for optimizing the ALA of the PROSAIL model
based on ground-measured data; then, the ALAadj of wheat and soybean was obtained.
Optimizing ALA requires determining the measured vegetation parameters and the used
bands. Due to the overlap of response areas of the LAI and ALA, as well as the CCC
containing LAI information, ALA optimization for the PROSAIL model needs the measured
LAI data, in addition to the spectrum. LCC was used as supplementary measured data
(Figures S1 and S2). In the case of additional data, it also participated in the PROSAIL model
fitting process to obtain ALAadj. Based on the analysis of the measured and simulated
data, it was found that the main spectral response regions of ALA are the red-edge and
near-infrared regions [34,57]. We considered the sensitive response bands of canopy ALA
to optimize ALA when using measured spectra and non-ALA vegetation parameters. The
specific ALAadj formula, based on RFR, is as follows:

ALAadj = RFR (SPEC, LAImeasured, LCCmeasured) (4)
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where SPEC is the canopy reflectance, and LAImeasured and LCCmeasured are the ground-
measured LAI and LCC values. Considering the presence or absence of chlorophyll, there
are two combinations of inputs: (a) SPEC_LAI, meaning that the input data have reflectance
and are LAImeasured; (b) SPEC_LAI_LCC, meaning the input data have reflectance and are
LAImeasured and LCCmeasured.

2.3.4. CCC Retrieval Model, Based on ALAadj Related to Crop Types

In this study, the PROSAIL-D model was used to simulate the canopy’s spectral
reflectance, and a training dataset containing multiple parameter variations, such as ALA,
LAI, and LCC was established. The CCC retrieval RFR models were established, whether
prior ALAadj knowledge was used or not. We used RFR to identify the bands related to
vegetation biochemical characteristics in different spectral datasets. RFR randomly selected
the feature number for each decision tree and determined the best feature number. Its
hyperparameters mainly included the number of growing decision trees. Too few trees
result in weak learning ability, so the number of trees was set to 100.

In order to compare and analyze the influence of the different ALAadj of wheat and
soybean on the retrieval model, two kinds of algorithms considering the prior ALAadj
knowledge, related to crop types or not, were designed and tested. First, the algorithm
advocated in this study was used to select the corresponding ALAadj-based RFR model to
carry out CCC retrieval for wheat and soybean, named the Prior-ALA model. Second, we
designed three NonPrior-ALA models for the CCC retrieval of soybean and wheat, without
considering the prior ALA knowledge corresponding to the differences in vegetation
types. The three NonPrior-ALA models included: (a) model training only using PROSAIL-
simulated data with the wheat ALAadj; (b) model training with the soybean ALAadj; (c)
model training with both wheat and soybean ALAadj.

Due to the difference in the number of sampling bands of different remote sensors,
the impact of band number on canopy chlorophyll machine learning was investigated
and evaluated. The continuous spectrum data and the different numbers of discrete band
data were used to test the CCC retrieval model. The continuous spectrum adopted the
50 narrow-band ground spectra within 400–890 nm that are related to chlorophyll, and
the discrete bands referred to the settings of Envisat MERIS and Sentinel-3 OLCI bands.
MERIS and OLCI are two important satellite sensors with red-edge bands and have very
overlapping band settings (Table 3). Referring to MERIS reflectance products, we selected
all available bands (13 bands) after removing the three main atmospheric bands (aerosol: B1;
oxygen: B11; water vapor: B15). The blue band is susceptible to residual aerosol effects [58],
so we also selected fewer bands (nine bands) after removing the bands adjacent to blue. As
given in Table 3, the three combinations of independent variables for the CCC estimation
were: (1) all continuous reflectance (50 bands) within 400–890 nm; (2) the reflectance of all
available bands in MERIS (13 bands): B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B12, B13, and
B14; (3) nine selected MERIS bands (nine bands) from the green to near-infrared regions:
B5, B6, B7, B8, B9, B10, B12, B13, and B14. The simulated spectra were resampled using the
MERIS spectral function to obtain 13- and 9-band datasets.
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Table 3. Corresponding band settings of the Envisat MERIS and Sentinel-3 OLCI sensors.

MERIS Band Band Center Band Width OLCI Band Band Center Band Width

B1 412.5 10 Oa2 412.5 10
B2 442.5 10 Oa3 442.5 10
B3 490 10 Oa4 490 10
B4 510 10 Oa5 510 10
B5 560 10 Oa6 560 10
B6 620 10 Oa7 620 10
B7 665 10 Oa8 665 10
B8 681.25 7.5 Oa10 681.25 7.5
B9 708.75 10 Oa11 708.75 10

B10 753.75 7.5 Oa12 753.75 7.5
B11 760.625 3.75 Oa13 761.25 2.5
B12 778.75 15 Oa16 778.75 15
B13 865 20 Oa17 865 20
B14 885 10 Oa18 885 10
B15 900 10 Oa19 900 10

The unit of band center and band width is nm.

2.3.5. Validation Method

Using ground reflectance data, CCC retrieval for wheat and soybean was carried out,
and the accuracy of this CCC inversion was verified by ground validation data. When
evaluating the accuracy of CCC retrieval, we should consider not only the determination
coefficient (R2) for the estimation results and ground-based validation data but also the
root mean square error (RMSE) and bias (Bias). The formulas for R2, RMSE, and Bias are
as follows:

R2 = ∑n
i (ŷi− y)

∑n
i (yi− y)

RMSE =

√
∑n

i=1(ŷi−yi)
2

n

Bias = ∑n
i (yi−ŷi)

n

(5)

where ŷi represents the estimated CCC value, yi represents the measured CCC value,
ӯrepresents the mean of estimated CCC values, and n represents the number of test samples.

3. Results and Analysis
3.1. Influences of Vegetation Variables on Canopy Reflectance

Figure 3 shows the estimation results of the importance of multiple vegetation factors
for visible and NIR reflectance, based on random forest regression analysis, in the case of
both a homogeneous canopy and a heterogeneous canopy with mixed pixels.

For the first case in which the PROSAIL model simulated the reflectance of a uniform
canopy, LCC, LAI and ALA contributed significantly to the tested bands before 900 nm.
Of the three most important factors, the LCC and LAI are the composition parameters
of the CCC. The LCC has the highest contribution importance on the canopy reflectance,
especially before 710 nm. The N value has a certain influence on the 560 nm and 710 nm
bands, but less influence on the other bands. There is little influence of Cm on all the visible
and NIR bands that were tested. Among the canopy parameters, the LAI is still the most
important driving factor affecting canopy reflectance, followed by the ALA. The importance
of soil reflectance changes is equivalent to the ALA in the 490 nm and 680 nm bands and
is far lower than that of the LAI and ALA in other bands. The global sensitivity analysis
results of the PROSAIL model reported in [29,34] showed that the LCC had a leading role
before 710 nm and that LAI and ALA were the two main driving forces for the reflectance
change, which is basically consistent with our variable importance measures results for the
homogeneous canopy scenario. This shows that the variable importance analysis method
of using random forest to evaluate the multi-factor contributions of canopy reflectance is
also reliable.
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In the case of vegetation–soil mixed pixels, which is a special non-uniform canopy
scenario, the importance values of LCC and other leaf parameters to the tested bands are
similar to the result for the uniform canopy scenario. However, an obvious difference is
that FCsoil has become a new influencing factor of canopy reflectance, and its influence
in the 750 nm and 860 nm bands is greater than the ALA but only less than the LAI. In
addition, the mixed pixel effect greatly enhances the influence of the ALA and Rsoil on
visible and NIR reflectance. It is worth noting that the Rsoil has a greater impact on low
vegetation reflectance in the visible bands than the ALA while having a lower impact on
the red-edge and NIR bands. The results of the RFR importance analysis of the mixed-pixel
scenario show that the spectral contribution of the LAI was easily confused, not only with
the ALA factor but also with FCsoil. Therefore, the sensitivity of canopy reflectance to the
ALA and other heterogeneous canopy factors, such as FCsoil, should be considered in CCC
retrieval for crops that are usually planted in rows.
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Figure 3. Variable importance analysis for canopy reflectance at different wavelengths in the two
cases of a homogeneous canopy and vegetation-soil mixed pixels.

3.2. ALAadj Parameterization of the PROSAIL Model for Wheat and Soybean

An ALA optimization model was established by the random forest algorithm, based
on PROSAIL-simulated data (Section 2.2). As seen in Figure 3, the reflectance of the
710–890 nm bands was selected for ALA optimization. Table 4 shows that the average
values of wheat ALAadj obtained by PROSAIL optimization, based on the canopy spectra
and the measured LAI with or without LCC, were very close (62.0 and 61.8 degrees respec-
tively), and the prior knowledge of wheat ALAadj for this study was set to 62 degrees. The
soybean ALAadj obtained from the two sets of data was 45.1 and 45.7 degrees, respectively.
In this study, the prior knowledge of soybean ALAadj was set to 45 degrees. Whether or
not LCC was involved, the results of ALAadj for wheat and soybean were stable, and there
was a clear distinction between the ALAadj of wheat and soybean.
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Table 4. ALAadj (degrees) obtained through PROSAIL parameterization, based on the measured data
of wheat and soybean.

Crop Type
Using SPEC_LAI_LCC Using SPEC_LAI Using

SPEC_LAIMean Mean Mean StDv

Wheat 62.0 5.2 61.8 5.2 62
Soybean 45.1 9.3 45.7 9.3 45

SPEC_LAI, measured data for ALA optimization, including canopy spectra and the measured LAI;
SPEC_LAI_LCC, canopy spectra, the measured LAI, and the leaf chlorophyll content (LCC); StDv, stan-
dard deviation.

3.3. CCC Retrieval with Prior ALAadj Knowledge for Wheat and Soybean

Figure 4 provides the validation of CCC retrieval based on the ground-measured
continuous spectra, considering prior ALAadj knowledge or not. Figure 4a shows that
the NonPrior-ALA_45 model constructed by PROSAIL simulations, with an ALAadj of
45 degrees, had a good correlation between the estimated and measured CCC values of
soybean but the CCC value of wheat was underestimated, especially when the CCC
was relatively large. Figure 4b shows that the NonPrior-ALA_62 model produced a
very good CCC estimation of wheat but produced an overestimation of the soybean
CCC. Figure 4c shows that the NonPrior-ALA_45_62 model underestimated the CCC for
wheat and overestimated the CCC for soybean. Compared to the three models without
considering prior ALA, the test results of the random forest model with a prior (Prior-
ALA_45_62) (Figure 4d) showed no obvious overestimation of wheat or soybean, and its
retrieval accuracy (R2 = 0.76, RMSE = 32.9 µg cm−2) was better than all three CCC mod-
els without prior ALAadj knowledge related to crop types (NonPrior-ALA_45: R2 = 0.62,
RMSE = 44.1 µg cm−2; NonPrior-ALA_62: R2 = 0.65, RMSE = 43.4 µg cm−2; NonPrior-
ALA_45_62: R2 = 0.67, RMSE = 39.9 µg cm−2).
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Figure 4. Scatter plots of the ground-measured CCC and the CCC predicted by ground-measured
canopy spectra, based on the RFR models (a–c) without and (d) with prior ALAadj knowledge related
to crop types. (a) NonPrior-ALA_45 mode; (b) NonPrior-ALA_62 model; (c) NonPrior-ALA_45_62
model; (d) Prior-ALA_45_62 model.
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Table 5 shows the performance differences of the CCC retrieval models for wheat
and soybean. In the validation results for wheat samples, it was found that the NonPrior-
ALA_62 model, trained by the PROSAIL-simulated data with our proposed wheat ALAadj

(62 degrees), showed higher CCC retrieval accuracy (RMSE = 37.9 µg cm−2) than the
other two models (NonPrior-ALA_45: RMSE = 56.2 µg cm−2; NonPrior-ALA_45_62:
RMSE = 39.4 µg cm−2). In the validation results for the soybean samples, the CCC ac-
curacy (RMSE = 26.9 µg cm−2) of the NonPrior-ALA_45 model corresponding to the pro-
posed soybean ALAadj (45 degrees) was better than the other two (NonPrior-ALA_62:
RMSE = 48.2 µg cm−2; NonPrior-ALA_45_62: RMSE = 40.3 µg cm−2). The difference in the
wheat or soybean CCC RMSE values for the above three models was large, which was not
only caused mainly by the change in R2 but also by the large variation of Bias. This shows
that when the ALA of the PROSAIL simulations did not match the prior ALAadj knowledge
corresponding to the test crop, the RFR algorithm produced a larger CCC retrieval error. For
comprehensive test samples of the two crops, the Prior-ALA_45_62 model that considered
prior knowledge of crop type-related ALAadj obtained the best performance.

Table 5. Statistical results of the CCC retrieval accuracy for wheat and soybean samples.

Method
Wheat Soybean Wheat and Soybean

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

NonPrior-ALA_45 0.48 56.2 40.0 0.86 26.9 –6.5 0.62 44.1 16.8
NonPrior-ALA_62 0.61 37.9 16.6 0.92 48.2 –30.4 0.65 43.4 –6.9

NonPrior-ALA_45_62 0.63 39.4 21.6 0.91 40.3 –22.7 0.67 39.9 –0.5
Prior-ALA_45_62 0.61 37.9 16.6 0.86 26.9 –6.5 0.76 32.9 5.0

The unit of RMSE and Bias is µg cm−2.

3.4. Performance Comparison of the Improved CCC Retrieval Model Using Continuous and
Discrete Spectra

Figure 5 shows the validation and comparison results of the CCC retrieval models
using the continuous and discrete bands. In the case of not considering the prior knowledge
of crop-type-related ALAadj, using the reflectance of the continuous waveband can obtain
the highest CCC retrieval accuracy (Figure 5a). As the resolution decreased, the accuracy
of CCC retrieval was slightly reduced (Figure 5b,c). In the scenario where the prior
ALAadj knowledge is included, the accuracy had a similar relationship with the number
of input bands (Figure 5d–f). Figure 5 also indicates that, after considering the prior
ALAadj knowledge, the CCC retrieval accuracy using the continuous and discrete spectra
significantly increased. The RMSE of the improved CCC retrieval model using the 50-band
continuous reflectance decreased by 7.0 µg cm−2 and the R2 increased by 0.09; the RMSE
of the improved model using the 13-band discrete reflectance decreased by 10.2 µg cm−2

and the R2 increased by 0.11; the RMSE of the improved model, using the nine-band
discrete reflectance, reduced by 8.1 µg cm−2 and the R2 increased by 0.10. Using any of
the three different band combinations, the accuracy of the improved CCC retrieval models
(RMSE: 32.9~37.0 µg cm−2; R2: 0.71~0.76) was higher than those of models not involving
crop-type-related ALAadj parameterization (RMSE: 39.9~45.1 µg cm−2; R2: 0.61~0.67). In
other words, the influence of crop-type-related ALAadj parameterization on CCC retrieval
is larger than that of the difference among the three band selections in this study.
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Figure 5. Scatter plots of the ground-measured and predicted CCC based on the RFR model using
continuous and discrete spectra. Above: results of NonPrior-ALA_45_62 model using (a) 50 bands,
(b) 13 bands, and (c) nine bands. Below: results of Prior-ALA_45_62 model using (d) 50 bands,
(e) 13 bands, and (f) nine bands.

4. Discussion
4.1. Contribution of Our Proposed Method to PROSAIL-Based Retrieval of Crop Parameters

This study proposed an ALAadj parameterization scheme to improve the performance
of the PROSAIL model in the CCC estimation for different crops. The PROSAIL model
simplifies the scene and parameters, making it straightforward and easy to use, but the
non-uniform canopy assumptions of the PROSAIL model also limit the application of the
PROSAIL model for a non-uniform canopy. For example, the PROSAIL-simulated spectrum
using measured vegetation parameters is inconsistent with the simultaneously measured
spectra [34]. This problem limits the vegetation parameter hybrid retrieval based on the
PROSAIL simulations, as shown in Sections 3.3 and 3.4 of this paper. Establishing model
parameterization schemes according to actual scenes or research objects is an important
way to improve the simulation accuracy of vegetation RTMs [19,59,60]. For the PROSAIL
model, the ALA is considered to be the structural parameter that has the greatest impact
on reflectance, besides the LAI [31,61]. The LAI quantifying the number of leaves cannot
be used to express the degree of canopy spatial heterogeneity, while the ALAadj can
achieve a different canopy gap fraction under the same LAI (shown in Figure 2) and
make the PROSAIL simulations adapt to a heterogeneous canopy. It has been proven that
PROSAIL simulations with ALAadj can maintain better consistency with the measured
spectra of wheat and maize [34]. Due to the conflict between PROSAIL simulations and
the actual canopy spectra of row-planted crops, error of the crop CCC estimates occurs
when appropriate ALAadj parameterization is not considered in the PROSAIL-based hybrid
model of CCC retrieval; in particular, the CCC estimation error in medium and high LAI
samples is obvious (Figure 6a). In this study, the RFR algorithm of CCC estimation with
ALAadj parameterization drastically alleviated the problem of substantial error in medium
and high LAI crop samples (Figure 6b).

In the previous studies on RTM-based CCC retrieval, Xing [62] reported their best
result for wheat CCC estimates obtained from PROSAIL-based regression models using VIs
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(wheat: RMSE = 104.66 µg cm−2), which is worse than the result (shown in Table 5) of using
our unimproved RFR model (wheat: RMSE = 39.4 µg cm−2) or improved RFR model (wheat:
RMSE = 37.9 µg cm−2). This indicates that the advantages of advanced machine learning
algorithms such as RFR in non-linear learning may play a role. Sun [63] used a PROSAIL-
based RFR model with two VIS inputs (MTCI and MTVI2) to obtain a comprehensive
wheat and soybean result of CCC retrieval with an RMSE of 37.76 µg cm−2, which is similar
to that from our unimproved RFR model using reflectance spectra (wheat and soybean:
RMSE = 39.9 µg cm−2) but is worse than that when using our improved RFR model (wheat
and soybean: RMSE = 32.9 µg cm−2). In addition, the accuracy of soybean CCC estimates
from our improved physical-based model (soybean: RMSE = 26.9 µg cm−2) is not as good
as the best accuracy of soybean CCC estimates from the locally calibrated empirical model
using CIred-edge (soybean: RMSE = 16 µg cm−2) reported by Clevers [64]. This may be
understandable because hybrid algorithms based on RTMs have strong generalization
abilities and empirical models using local calibration have advantages in local areas [32].
To the best of our knowledge, this is the first time that prior information of crop type-
related ALAadj has been involved in the PROSAIL-based retrieval of vegetation parameters.
This study provides a new design idea for RTM-based machine learning algorithms for
retrieving other parameters across different crop types.
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Figure 6. Accuracy of CCC retrieval characterized by LAIs for wheat and soybean using ground-
measured continuous spectra (a) without and (b) with considering prior ALAadj knowledge related
to crop types. (a) NonPrior-ALA_45_62 model; (b) Prior-ALA_45_62 model.

This study used a special heterogeneous canopy scenario—an ideal mixture of vegeta-
tion and soil—to show that the canopy spatial heterogeneity of row crops can have a great
impact on the spectral reflectance, related to CCC. There are other characteristics of crop
canopy structure that are not considered by the PROSAIL model, such as leaf and stem
morphology [65,66]. They may cause spectral differences between different crops under
the same CCC and affect the performance of a PROSAIL-based CCC retrieval model. There
are great differences in these canopy characteristics between crop types, which makes cross-
crop-type CCC retrieval rather difficult. This study aimed to address this problem, and
improved CCC retrieval for wheat and soybean by introducing ALAadj parameterization
into a PROSAIL-based RFR algorithm. In addition, the growth dynamics of crops within
the same type are accompanied by changes in the attributes of these canopy structure
factors [66]. Our wheat case (shown in Figure S2) shows that variations in growth stages
increased the difficulty of CCC modeling even for the same crop, although our proposed
method improved the accuracy of wheat CCC retrieval (especially in terms of Bias). Based
on more crop structure measurements and advanced 3D canopy models, it will be very
valuable to carry out quantitative analysis of the impact of LAI, ALA, leaf morphology, stem
composition, and other canopy heterogeneity factors on the CCC retrieval of cross-type
crops in the future.
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4.2. Reliability and Limitation of the ALAadj Parameterization Associated with Crop Types

A feasible scheme of ALAadj parameterization for the PROSAIL model is crucial to
improving the hybrid machine learning algorithms for CCC estimation. In addition to the
spectral data, the LAI provides the necessary measured data for an ALAadj parameterization
scheme. This is because the LAI and ALA have overlapping effects on reflectance, and they
are difficult to separate by spectral retrieval [19]. Our research found that ALAadj calculation
based on the measured LAI and canopy spectrum can obtain stable results, regardless of
whether chlorophyll is involved or not (as shown in Table 4). In addition, LAI samples are
easier to obtain than LCC samples in the field. Consequently, the use of the canopy spectrum
and measured LAI is also a practical and feasible ALAadj parameterization scheme.

ALAadj containing canopy ALA information, as well as other canopy structure in-
formation, has the ability to reflect the differences in canopy structure for different crops,
which was proven in our parameterized ALAadj results, showing obvious differences
between wheat and soybean. Our ALAadj parameterization results of the wheat sample
(ALAadj = 62 degrees) was similar to the wheat results (ALAadj = 60.5 degrees) reported in
the literature [34]. The wheat ALA values were reported to be generally greater than the
soybean ALA [34,53,67], which is similar to our own ALAadj comparison results between
wheat and soybean. However, the correlation between ALAadj and ALA was found to
not be very strong [34], which shows that ALAadj not only contains ALA information but
also canopy structure information other than LAI and ALA. The plant types of different
crops are obviously variable, and the planting structures of the same crops are similar.
That results in more consistent ALAadj within the crop types, and larger differences in
inter-type ALAadj values, although ALA may vary with different growth stages or different
varieties for a given crop type [57,61]. Therefore, ALAadj related to crop types can become
an effective prior knowledge that can be used in CCC retrieval models across different
crop types.

The obtained ALAadj for nadir observation in this study may be not suitable for all
observation angles. By using our ALAadj parameterization model for nadir observation
and PROSAIL-simulated data with a fixed ALA of 45 degrees, the influence of different
view zenith angles (VZAs) on the ALAadj parameterization was shown in Figure 7. The
PROSAIL-simulated spectra correspond to a homogeneous canopy; the ALA input of
45 degrees should be the true ALAadj value in this case. The obtained ALAadj values
close to the nadir are more accurate than those far from the nadir, which implies that the
extraction and application of prior ALAadj knowledge must consider the VZA matching.
To solve the problem of ALAadj application with large-angle observation, one possible
approach is to generate a prior knowledge matrix of ALAadj related to both crop types
and VZAs.
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Figure 7. Applicability of the ALAadj parameterization model for nadir observation to different view
zenith angles. The test scenario is a homogeneous canopy simulated by the PROSAIL model, with
variations in the view zenith angle and a fixed ALA of 45 degrees. Here, the fixed ALA is equal to the
ALAadj truth value.
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Verhoef’s leaf inclination distribution mode was used for ALA optimization in this
study. In addition, there are other leaf inclination distribution modes that have a certain
influence on canopy spectra simulation [55]. Therefore, the leaf inclination distribution
modes used in the acquisition and application of crop-type-related ALAadj with the PRO-
SAIL model need to be the same. This study only tested the cases of wheat and soybean. In
future investigations, for more crops with a complex canopy structure, it is necessary to
carry out new and more precise tests of ALAadj parameterization for the PROSAIL model.

4.3. Prospects of Our Proposed Method of Crop CCC Estimation Based on Satellite Data

With the exception of prior ALAadj knowledge of different types, the satellite-scale
CCC retrieval also requires the spatial distribution of crop types to determine the ALAadj
value. The development of vegetation-type mapping products is becoming increasingly
better [68–70], and the promotion of the hybrid vegetation retrieval model with ALAadj
parameterization has a chance of receiving better support.

In this study, the improved method was based on the ground reflectance spectrum. In
addition to continuous reflectance (50 bands), we also tested discrete band combinations
(13 and nine bands) with reference to MERIS and Sentinel satellite data. It was found that
the performance of the discrete spectrum was worse than that of the continuous spectrum,
which is similar to other parameterization studies [71,72]. The small reduction is also
acceptable in the discrete band (Figure 5), which shows that the method has the potential
to be extended to discrete satellite remote-sensing data.

In addition, there are some uncertainties in the actual satellite data, including remote
sensor hardware indicators, atmospheric correction processing [73], and complex ground
mixing [74]. Future research can try to use Sentinel-2, Sentinel-3, and other satellites to
estimate and test the canopy chlorophyll content of satellite-to-ground synchronization, to
further verify the applicability of the proposed algorithm on the satellite scale.

5. Conclusions

In this study, through the evaluation of the variable importance of canopy reflectance
based on the random forest algorithm, it was found that the PROSAIL model had difficulty
in expressing a spatially heterogeneous canopy with vegetation–soil mixed effects caused
by crop-row planting. Given that the ALA input of the PROSAIL model is related to the
gap of the canopy, ALA adjustment based on measured spectra and non-ALA parameters
can take into account the influence of the ALA and canopy spatial heterogeneity on the crop
reflectance in a specific observation direction. In view of the limitations of the PROSAIL
model in expressing the complexity of vegetation structure, this study proposed an RFR
algorithm of crop CCC retrieval that is trained with PROSAIL simulations, with prior
ALAadj knowledge. The applicability of the algorithm was tested using measured wheat
and soybean data. The results show that the parameterized values of ALAadj (62 degrees
for wheat; 45 degrees for soybean), fitted based on ground-measured data, showed good
discrimination between the two crop types. The CCC retrieval accuracy (RMSE from
39.9 to 32.9 µg cm−2; R2 from 0.67 to 0.76) of wheat and soybean ground continuous
spectra (50 bands) was improved by integrating the prior knowledge of wheat and soybean
ALAadj parameterization. In addition, this method also performed well under discrete
reflectance data (13 bands: RMSE from 43.9 to 33.7 µg cm−2; R2 from 0.63 to 0.74; nine
bands: RMSE from 45.1 to 37.0 µg cm−2; R2 from 0.61 to 0.71). The findings reveal that
the ALAadj parameterization for the PROSAIL model helps to improve the performance
of RFR hybrid algorithms of CCC retrieval across crop types. With the support of crop
type (survey or satellite) products, our proposed CCC retrieval algorithm involving ALAadj
parameterization related to crop types will offer the beneficial potential of application on a
large scale, as well as providing a good reference for an RTM-based hybrid algorithm for
other crop parameter estimations.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14010098/s1, Figure S1: Five soil spectra from light to dark used
in the PROSAIL simulations, Figure S2: Accuracy of CCC retrieval characterized by different growth
stages for wheat using ground-measured continuous spectra (a) without and (b) with considering
prior ALAadj knowledge related to crop types.
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