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Abstract: Wheat Fusarium head blight (FHB) can be effectively controlled through prediction. To
address the low accuracy and poor stability of model predictions of wheat FHB, a prediction method
of wheat FHB that couples a logistic regression mechanism-based model and k-nearest neighbours
(KNN) model is proposed in this paper. First, we selected predictive factors, including remote sensing-
based and meteorological factors. Then, we quantitatively expressed the factor weights of the disease
occurrence and development mechanisms in the disease prediction model by using a logistic model.
Subsequently, we integrated the obtained factor weights into the predictive factors and input the
predictive factors with weights into the KNN model to predict the incidence of wheat FHB. Finally, the
accuracy and generalizability of the models were evaluated. Wheat fields in Changfeng, Dingyuan,
Fengyuan, and Feidong counties, Anhui Province, where wheat FHB often occurs, were used as the
study area. The incidences of wheat FHB on 29 April and 10 May 2021 were predicted. Compared
with a model that did not consider disease mechanism, the accuracy of our model increased by
approximately 13%. The overall accuracies of the models for the two dates were 0.88 and 0.92, and
the F1 index was 0.86 and 0.94, respectively. The results show that the predictions made with the
logistic-KNN model had higher accuracy and better stability than those made with the KNN model,
thus achieving remote sensing-based high-precision prediction of wheat FHB.

Keywords: wheat; fusarium head blight; mechanism; remote sensing; machine learning techniques

1. Introduction

Fusarium head blight (FHB) is a major wheat disease caused by Fusarium graminearum
(Gibberella zeae) [1]. In recent years, due to the large-scale promotion of wheat and maize
rotation and returning crop straw to the field, as well as the influence of climate change and
other factors, wheat FHB in China has gradually spread from the south to the north, and the
prevalence and severity of this disease have increased significantly [2]. In addition, wheat
varieties planted in most areas in China lack resistance to FHB. After wheat is infected
by FHB, toxic substances such as deoxynivalenol (DON), a metabolite of the pathogen,
seriously endanger human and animal safety [3,4]. According to previous reports, in
epidemic years, FHB can generally cause 5~15% yield loss, with losses of up to 40% in
severe cases, which directly affects food security [5,6]. Because of the frequent occurrence
and rapid development of wheat FHB, once the disease occurs, the damage to the wheat
field is irreversible. Therefore, high-precision prediction plays an important role in the
accurate formulation of prevention and control plans.
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Selecting and determining important host and habitat factors are necessary for remote
sensing-based prediction of crop diseases. At present, scholars worldwide mainly carry out
disease prediction based on meteorological information [7,8]. By studying the quantitative
relationship between meteorological factors, such as temperature, precipitation, rainy days
and wind direction, and disease prevalence, and using these factors as input variables to
build prediction models, regional disease prediction can be realized [9]. In recent years, the
rapid development of Earth observation technology has provided a new opportunity for
crop disease prediction [10]. Remote sensing technology can be used to obtain continuous
spatial information of farmland. Many scholars try to monitor and predict crop diseases
based on remote sensing. Li Xingrong et al. identified cotton root rot based on a remote
sensing spectral vegetation index and achieved high accuracy. Bajwa S G et al. used a remote
sensing vegetation index to monitor soybean diseases and achieved good results [11,12].
However, in the field of disease prediction, most studies are based on only meteorological
information or remote sensing indexes that cover a single timeframe, and the accuracy and
spatial resolution of these predictions are not high [13–15]. In this paper, by combining the
multiscale meteorological factors of the integrated habitat with temporally varying remote
sensing factors, according to the different sensitivities of factors to wheat FHB in different
growth stages, factors were selected for timeseries prediction.

In recent studies, machine learning techniques have been extensively explored for
plant disease studies due to their rapid and precise measurement capacities. Many scholars
have tried to predict diseases based on machine learning models. Elham Khalili et al.
predicted soybean carbon rot based on the linear regression of L1 and L2 regularization
terms (LR-L1 and LR-L2), Multi-layer Perceptron (MLP), Random Forest (RF), Gradient
Boosting Tree (GBT) and support vector machine (SVM) models. The accuracy of these
models reached higher than 90%. Among the models, the sensitivity and specificity of
GBT were the best, reaching 96.25% and 97.33%, respectively [16]. Diego Bedin Marin
et al. predicted coffee leaf rust based on the Logical Model Tree (LMT), Random Tree
(RT) and RF models. The results showed that the LMT method contributed the most
to the accurate prediction of early and several infection categories [17]. Some scholars
have also established mechanistic models to simulate the occurrence and development
processes of diseases and have achieved good results [18]. Sarinya Kirtpaiboona et al. used
a Susceptible Exposed Infectious Recovered (SEIR) model to simulate the occurrence and
development of rice blasts. Then, they predicted the severity of rice blast and achieved
good results [19]. Henderson et al. used the logistic regression mechanism model to
predict potato late blight. Their results showed that the logistic model could accurately
predict the occurrence of late potato blight, with sensitivity and specificity values of
75% and 62.5%, respectively [20]. However, although the prediction accuracy based on the
machine learning model was high, it is a black box model [21] that fails to consider the
biological mechanism of disease occurrence and development and has poor generalization
and stability. The SEIR model requires many parameters, and its accuracy and stability
depend on whether the input information is accurate and complete [19,22]. The structure
of the logistic mechanism-based model is more suitable for local simulation [18,23]. To
address the above-mentioned problems, this paper first quantitatively expressed the factor
weight of the disease occurrence and development mechanism in the disease prediction
model by using a logistic mechanism-based model, and then, factor weights were fused into
the disease prediction factors and input into the KNN model. By inputting the prediction
factor of the fusion weight, the prediction accuracy and stability of the KNN model for
wheat FHB can be improved, and high-precision prediction of wheat FHB can be realized.

In this paper, a logistic mechanism-based model and KNN model were coupled to
study the high-precision prediction of winter wheat FHB. First, we obtained satellite images
of the study area with high temporal and spatial resolutions and information about the
study area. Then, we extracted the prediction factors by integrating remote sensing and
meteorology. Factors were selected according to different wheat growth stages, and the
factor weights of disease occurrence and development mechanism in the disease prediction
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model were quantitatively expressed according to the logistic mechanism-based model.
Then, the factor weights were combined with the predictive factors and input into the
prediction model to predict wheat Fusarium head blight. Remote sensing-based high-
precision prediction of wheat FHB was realized.

2. Materials and Methods
2.1. Study Area and Data

The study area addressed in this paper is located in Changfeng county, Dingyuan
county, Fengyuang county, and Feidong county (29◦24′N~34◦39′N, 114◦53′E~119◦39′E),
Anhui Province (Figure 1). The area is located in the lower reaches of the Yangtze River.
The planting area of winter wheat is approximately 2450 square kilometres, accounting for
30% of the total area. The wheat seeding time in Anhui, including our study area, was in
October 2020. The main wheat variety here is Yangmai 25, which is susceptible to FHB. The
region has a subtropical humid continental monsoon climate, with an annual precipitation
of approximately 1000 mm and an average annual temperature of 15 ◦C [24,25]. Due to the
influence of monsoons, the amount of precipitation is highest in spring and summer. In
addition, due to the high planting density of wheat, wheat varieties susceptible to FHB,
sufficient bacterial sources, suitable precipitation and temperature, and other conditions,
the occurrence of winter wheat FHB is frequent in this area [26].
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Figure 1. Study area and sampling sites.

We obtained ground survey data, satellite images, and meteorological data for the
abovementioned study area. To collect reference data for wheat FHB predictions, we con-
ducted two field investigations on 29 April and 10 May 2021. We selected 154 homogenous
wheat areas with width, length, and the distance to each one all larger than 30 m were
selected. A GNSS receiver was utilized to obtain the longitude and latitude of the centre
of the area. In each area, five 1 × 1 m2 plots were randomly selected out to investigate
the number of wheat plants and diseased plants. Subsequently, the average disease in-
cidence of the five plots was calculated to be the disease incidence in the area. Satellite
images include Sentinel-2 reflectance products, MODIS reflectance products and Sentinel-3
reflectance products. The Sentinel-2 products have a spatial resolution of 20 m, MODIS
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products have a spatial resolution of 250 m and Fractional Vegetation Cover (FVC) product
from the Copernicus Global Land Service (CCLS) have a spatial resolution of 250 m. The
meteorological data include daily temperature, relative humidity and precipitation from
ground meteorological stations. Spatial kriging interpolation of the meteorological data
was carried out based on data from 47 meteorological stations in and around the study area.
The spatial resolution of the interpolated meteorological data is 250 m.

2.2. Construction of a Remote Sensing Prediction Model of Wheat FHB

To solve the problems of low prediction accuracy and poor model stability caused by
less consideration of the contribution of disease occurrence and development mechanisms
in wheat FHB prediction models and achieve high-precision predictions of wheat FHB, in
this paper, a coupled logistic mechanism-based model and KNN machine learning model
was proposed to predict wheat FHB. The basic steps of the model are as follows. First, due
to the different sensitivities of wheat FHB to disease prediction factors at different stages
of wheat growth, we selected potential disease prediction factors and divided them into
test and training sets at different stages of growth [13,27]. Second, the factor weights of
disease occurrence and development mechanism in the disease prediction model were
quantitatively expressed by using a logistic regression mechanism-based model, and the
factor weight was fused with the prediction factor. Finally, the prediction factors with
weights were input into the KNN model to create high-precision predictions of wheat FHB,
and the model was evaluated (Figure 2).
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Figure 2. Flow chart of remote sensing-based prediction of wheat FHB area and samplings.

2.2.1. Selection of Disease Prediction Factors

According to the characteristics of wheat FHB, we preliminarily selected the remote
sensing factors and meteorological factors. Wheat FHB usually causes changes in leaf
morphology, colour, and other aspects of plant morphology, resulting in changes in optical
properties [15]. Therefore, when selecting the remote sensing features used to describe the
crop growth environment, we mainly considered the features that can reflect crop nutrition
and disease stress, for example, the Fractional Vegetation Cover (FVC), Plant Senescence
Reflection Index (PSRI), Red-edge Head Blight Index (REHBI), Modified Chlorophyll Ab-
sorption Ratio Index (MCARI), Differential Vegetation Index (DVI), Triangular Vegetation
Index (TVI), etc. [28–32]. Among these indexes, the PSRI reflects stress in the crop canopy
well [28,29], and the TVI describes the radiant energy absorbed by pigments [33].

For meteorological factors, we first investigated the heading stage and flowering
stage of wheat in the study area. The heading date of wheat in our study area was
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20 April 2021, and the flowering date was 24 April 2021. Then, 3, 5 and 7 days before and
after flowering and heading, we calculated the average temperature (TAVG), humidity
(RHAVG) and precipitation (PAVG) respectively. We also calculated the number of days
with humidity greater than 60%, 70% and 80% (RHT60, RHT70, and RHT80, respectively)
and temperature greater than 15 ◦C and less than 30 ◦C and the number of days with
precipitation (PDAY) [34].

To improve the accuracy of the prediction model and prevent redundancy caused
by the inclusion of too many features, at the two time points (29 April and 10 May), we
adopted the method of Logistic + L1 regularization and Fisher Score to select the factor
library containing 303 remote sensing factors and meteorological factors.

2.2.2. The Factor Weight of the Disease Epidemic Mechanism in the Prediction Model Was
Expressed Quantitatively

The logistic regression model is a mechanism model used to describe the progress
of wheat FHB [35], and its application and interpretation have been reviewed in detail
(Campbell and Madden, 1990). The logistic regression expression is:

y =
1

1 + e−βT∗X
(1)

The vector X = (x0, x1, x2, ...xn) is the prediction vector and is composed of each
disease prediction factor, including both remote sensing-based factors and meteorological
factors. β = (β0,β1,β2, ...,βn) are the coefficients of each factor, and y is the disease
probability of wheat FHB [18,36]. When there was no collinearity among the factors, the
logistic regression model that fit with the training set quantitatively expressed the factor
weights of disease occurrence and development mechanism in the disease prediction
model [37]. The factor weights were expressed quantitatively after the square of the
standard regression coefficient of each disease prediction factor was normalized.

There was usually collinearity among disease prediction factors, which affected the
standard regression coefficient fitted by the logistic regression; therefore, it was necessary
to reduce collinearity among the disease prediction factors [38]. First, the orthogonal
representation of the original factors was found by using singular value decomposition to
remove the correlation between the disease prediction factors [39], and it was assumed that
X was a full rank matrix of disease prediction factors of size N*J, where N is the number
of rows, J is the number of columns, and N > J. Then, singular value decomposition was
performed on X:

X = P∆QT (2)

where P is the feature matrix of XXT, Q is the feature matrix of XTX, and the matrix ∆
is composed of the square root of the eigenvalues of XTX. Therefore, the least-squares
orthogonal standard of factor X was approximate:

Z = PQT (3)

Since there was no collinearity between the various characteristic components of Z,
we first used Z as the training set. The standard regression coefficient for disease prediction
factor Z was fitted using the logistic regression model, and then the standard regression
coefficient was converted to a standard regression for disease prediction factor X using the
relationship between the original disease prediction factors X and Z [37].

Because the outcome variable of the logistic regression is usually the category, the
method of calculating the standardized regression coefficient by multiple linear regression
was not applicable to the logistic regression. Menard (2004) proposed a method for calcu-
lating the standard regression coefficient with Z as the disease prediction factor, and the
expression is:

β∗M = (b)(sZ)(R0)/
(
sy∗
)

(4)
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where b is the nonstandardized logistic regression coefficient, sZ is the standard deviation
of the disease prediction factor Z, R0 is the square root of the goodness of fit of the logistic
regression, and sy∗ is the standard deviation of the predicted value y∗ in the logistic
regression [40]. Since the disease prediction factors in Z have no collinearity, β∗M

2 can
represent the relative importance of the disease prediction factors. Below, we convert β∗M

2

into the relative importance coefficient when X is the disease prediction factor. First, we
performed a linear regression for each component in X about Z and obtained the linear
regression coefficient, the expression of which is as follows:

ω∗ =
(

ZTZ
)−1

ZTX (5)

Using Equations (4) and (5), we obtained the relative importance coefficient ε∗2 of
disease prediction factor X [37], expressed as follows:

ε∗2 = ω∗2β∗M
2 (6)

Finally, we standardized the value to obtain the factor weight:

ωi =
ε∗2

i

∑m
i=1 ε

∗2
i

(7)

2.2.3. Prediction of Wheat FHB with KNN Coupled with the Logistic
Mechanism-Based Model

The selected disease prediction factors from 29 April 2021 and 10 May 2021 were
divided into a training set and test set at 7:3. We quantitatively expressed the factor
weights of disease occurrence and development mechanism in the prediction model by
using a logistic regression model and joined them with the prediction factors. The disease
prediction factors with weights were input into the KNN model to predict the incidence of
wheat FHB in the study area on 29 April 2021 and 10 May 2021. The prediction accuracy was
calculated, and the model was evaluated using the F1 index as well as receiver operating
characteristic (ROC) curves.

Although KNN is simple, it can achieve good classification results in many scenar-
ios [41–44]. However, due to its lack of focus on mechanisms, the KNN model has a
relatively general performance in predicting wheat disease [45]. Therefore, we used the
logistic mechanism-based model to quantitatively express the factor weights of disease
occurrence and development mechanisms in the KNN model, to integrate the weights with
the prediction factors, and to input the prediction factors with the weights into the KNN
model to obtain a KNN wheat FHB prediction model coupled with a logistic mechanism-
based model (logistic-KNN). The distance formula for the logistic-KNN model is as follows:

dsj =
√

∑ m
i=1
(
asi − bji

)2 ∗ ωi i = 1, 2..., m (8)

where dsj is the Euclidean distance between the sth training sample and the jth test sample,
asi is the ith component of the sth training sample, bji is the ith component of the jth test
sample,ωi is the factor weight of the disease development mechanism in the prediction
model, and m is the number of disease prediction factors. In the process of prediction, we
randomly divided the set of prediction factors into a training set and a test set at a certain
proportion. To ensure the best prediction effect from the model, we used cross-validation to
obtain the best k value [46]. Then, to evaluate the performance of the KNN model with the
best k value coupled with the logistic mechanism-based model, we tested the predictive
ability of the model with the test dataset. We calculated the overall accuracy to evaluate the
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accuracy of the classification. Then, considering the precision and recall, we calculated the
F1 score. The F1 score is defined as follows:

F1 =
2 ∗ P ∗ R

P + R
(9)

where P is the precision value, and R is the recall value. In addition, we used the ROC
curve to evaluate the specificity and sensitivity of the model.

Due to the coupling of the logistic mechanism-based model and KNN model compared
with traditional KNN models, the model had higher accuracy and better stability. It was
more suitable for the high-precision prediction of wheat FHB.

3. Results
3.1. Selection of Remote Sensing-Based Disease Prediction Factors of Wheat FHB

Based on the host and habitat conditions, we created 303 prediction factors, including
meteorological factors and remote sensing-based factors. According to the sensitivities of
wheat FHB factors at different growth stages, we selected factors at the two time points of
29 April 2021 and 10 May 2021 by using the combination of logistic and L1 regularization
and Fisher scores. On 29 April 2021, we obtained eight prediction factors (Table 1), including
six meteorological factors and two remote sensing-based factors, and on 10 May 2021, we
obtained seven prediction factors (Table 2).

Table 1. Feature selection results based on logistic and L1 regularization and Fisher scores
(29 April 2021).

Index Definition

F_RH70_mid_-11 The number of days with RH greater than 70% in the 11 days before and after flowering
H_RH70_-7 The number of days with RH greater than 70% in the 7 days before heading
H_RH_+3 The average RH in the 3 days after heading
F_P_+11 The average precipitation of the 11 days after flowering

H_T1530RH80_mid_-5 The number of days with temperature between 15 and 30 ◦C degrees and RH greater than 80% in the
5 days before and after heading

F_P_-3 The average precipitation during the first three days of flowering
0404_REHBI Red-edge head blight index on 4 April 2021
0404_MCARI Modified chlorophyll absorption ratio on 4 April 2021

Table 2. Feature selection results based on logistic and L1 regularization and Fisher scores
(10 May 2021).

Index Definition

H_T1530RH70_+5 The number of days with temperatures between 15 and 30 ◦C degrees and RH greater than 70% in
the 5 days after heading

H_RH70_-7 The number of days with RH greater than 70% in the 7 days before heading

F_T1530RH80_mid_-7 The number of days with temperatures between 15 and 30 ◦C degrees and RH greater than 80% in
the 7 days before and after flowering

H_P_-15 The average precipitation of the 15 days before heading
H_P_-7 The average precipitation of the 7 days before heading

0501_PSRI Plant senescence absorption ratio on 1 May 2021
0320_FVC Fractional Vegetation Cover on 20 March 2021

3.2. Quantitative Expression of the Weight of the Prediction Model Based on the Logistic
Mechanism-Based Model

The selected disease prediction factors for 29 April and 10 May were divided into a
test set and training set at a 3:7 ratio, and then, the disease prediction factors in the training
set were decomposed by singular value decomposition to obtain linearly independent
disease prediction factors. Then, we obtained the weights of the factors using the linearly
independent disease prediction factors (Figure 3).
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We found that the weights of meteorological factors were generally larger than those
of the remote sensing-based factors on 29 April 2021 and 10 May 2021, and the weights of
the meteorological factors related to humidity were larger than those of the remaining me-
teorological factors. Thus, the weight of disease prediction factors expresses the mechanism
of disease occurrence.

3.3. Remote Sensing-Based Prediction of Wheat FHB

Because remote sensing images vary with time, remote sensing factors will change
over time. The meteorological factors were based on data acquired at meteorological
stations rather than prediction data; thus, the meteorological factors associated with the
samples did not change. That is, the factors associated with each sample include remote
sensing-based factors and meteorological factors; the remote sensing-based factors change
with the acquisition of satellite images, and the meteorological factors are fixed. Based on
the characteristics of samples in different periods, the incidence of wheat FHB on 29 April
2021 and 10 May 2021 was predicted. The 154 sample points collected on these two dates
were randomly divided into a training set and test set at a 7:3 ratio. The training set was
used to determine the parameter values of the logistic-KNN model, and a prediction model
was constructed for these two dates to calculate the accuracy of wheat disease predictions
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on each date. The prediction results were displayed on a map. Then, the total accuracy,
classification performance, and generalizability of the models were evaluated with the
corresponding test datasets. For comparison, we constructed and evaluated a KNN model
in the same way.

First, to optimize the parameter value k, which is the number of nearest neighbours
selected in each prediction, in the logistic-KNN model, we conducted a five-fold cross-
validation with the training datasets from different dates [46,47]. Taking the prediction for
29 April 2021 as an example, Table 1 shows the accuracy of the coupled logistic-KNN model
for different k values. For the prediction based on meteorological and remote sensing-based
characteristics on 29 April 2021, the average prediction accuracy results (Table 3) indicate
that the accuracy rate was highest when k = 3. The k value of the coupled logistic-KNN
model for 10 May 2021 was determined in the same way.

Table 3. The mean overall accuracy according to fivefold cross-validation for the 29 April 2021 model
when the threshold of probability was 0.

Prediction Model
29 April 2021

k Mean Overall Accuracy

Logistic-KNN 3 0.865
Logistic-KNN 5 0.781
Logistic-KNN 7 0.709

We used the logistic-KNN model with the best k value to predict the occurrence of
wheat FHB on 29 April 2021 and 10 May 2021. Moreover, we compared the KNN model
with the logistic-KNN model. The prediction results were divided into two states: in-
fected and not infected. As shown in Figure 4, the occurrence of wheat FHB is generally
severe in Dingyuan county. The distribution of diseased wheat was approximately the
same overall, and the trends were similar between the two models. In general, the preva-
lence of wheat FHB gradually increased over time. The comparison of the prediction
results of the KNN model and logistic-KNN model showed that the KNN model indicated
more severe infection on 29 April 2021 and less severe infection on 10 May 2021 than the
logistic-KNN model.

To evaluate the advantages of the logistic-KNN model in predicting wheat FHB, we
compared the performance of the KNN model with that of the logistic-KNN model. Taking
0 as the threshold of the disease incidence, wheat plots with a disease incidence value of 0
indicated absence of diseased wheat, and wheat plots with a disease incidence greater than
0 indicated diseased wheat. The overall accuracy and F1 index values of the two models on
different dates were calculated (Tables 4 and 5). The results indicate that the logistic-KNN
model was better than the KNN model in terms of the overall accuracy and F1 index value.
The logistic-KNN model had more advantages in predicting wheat FHB.

In addition, we randomly divided the ground survey points from 29 April 2021 and
10 May 2021 into training and testing sets at a 7:3 ratio. We made 10 predictions, obtained
10 ROC curves, obtained the average ROC curve, and calculated the AUC (Figure 5a,b).
The comparison results show that the logistic-KNN model had stronger specificity and
sensitivity than the KNN model, and the AUC was greater than 0.5, indicating that the
two models were better than a random guess for predicting wheat FHB and thus have
reference value. In addition, the logistic-KNN model had a stronger prediction ability and
generalizability than the KNN model. As the prediction date neared the onset of wheat
FHB, the AUC index value and prediction accuracy increased.
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Table 4. Overall accuracies and F1 scores of the two models for 29 April 2021.

Prediction Model
29 April 2021

Accuracy F1 Score

Logistic-KNN 0.88 0.86
KNN 0.75 0.68
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Table 5. Overall accuracies and F1 scores of the two models for 10 May 2021.

Prediction Model
10 May 2021

Accuracy F1 Score

Logistic-KNN 0.92 0.94
KNN 0.79 0.80
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4. Discussion

Researchers have used various methods to predict wheat FHB [1,48,49]. Compared
with previous methods, the main advantage of the method proposed in this paper is the
use of a logistic mechanism-based model to quantitatively express the factor weights of
disease occurrence and development mechanism in disease prediction models. Considering
a comprehensive set of meteorological and remote sensing factors, the disease prediction
factors of wheat FHB for 29 April 2021 and 10 May 2021 were selected according to the
incidence characteristics of wheat FHB in different growth stages. Finally, REHBI and
MCARI were selected as the remote sensing-based factors for the 29 April 2021 models,
and FVC and PSRI were selected as the remote sensing-based factors for the 10 May 2021
models, reflecting the growth status of wheat. In addition, five meteorological factors
before and after heading or flowering were included in the prediction factors selected.
Based on the selected disease prediction factors, we predicted the occurrence of wheat FHB
on 29 April 2021 and 10 May 2021. In addition, we compared the logistic-KNN model with
the KNN model and found that the former had higher classification accuracy and stability
for wheat FHB.

Previously, researchers used machine learning models to predict wheat FHB and
achieved good results, which proved the feasibility of applying machine learning models
in the prediction of wheat FHB [50–52]. However, the interpretability of machine learning
models is poor; thus, it is difficult to achieve stable predictions of wheat FHB [53]. In this
paper, a high-precision model for predicting wheat FHB was constructed by coupling a
logistic mechanism-based model with a KNN model. Compared with the KNN model alone,
the generalizability and stability were improved in the logistic-KNN model. Although
this study has achieved satisfactory results in the prediction of wheat FHB, there are still
some deficiencies that need to be improved upon in future research. First, apart from
these key meteorological factors that were considered in our methods, numerous other
meteorological factors influence the occurrence of FHB infection, and the effect cannot be
ignored under certain circumstances. Thus, in future studies, we will try to add predictors
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such as wind speed to predict wheat FHB. Then, the logistic-KNN model needs to include
all the points in the training set when searching for the nearest neighbour; this will result in
a large number of calculations in the prediction [54–57]. Many methods have been used to
reduce the number of calculations associated with finding nearest neighbour points, such
as constructing a k-d tree [58,59]. To construct a more extensive and effective prediction
model of wheat FHB, these methods can be used to reduce the number of calculations in
future research. Second, the method proposed in this paper produces binary classifications
based on multiple features. To achieve more accurate predictions of wheat FHB, we will try
to classify wheat FHB according to the disease grade in future research.

Our method results in a more effective model for predicting wheat FHB. Remote
sensing-based and meteorological factors are included in the prediction models as input.
As the remote sensing-based factors were more closely related than the meteorological
factors to the heading and flowering periods, the performance of the model was better
when remote sensing-based factors were included, with accuracies reaching more than
90% and the F1 index reaching approximately 0.9. We evaluated the KNN model and
logistic-KNN model, and the results indicated that the former had better model accuracy,
stability, and generalizability than the latter, and the prediction accuracy improved by
approximately 13% when the logistic-KNN model was used.

5. Conclusions

In this study, a remote sensing-based prediction method for wheat FHB was estab-
lished. The mechanism of disease occurrence and development plays a key role in the
prediction of wheat FHB. By inputting disease prediction factors that integrate host and
habitat conditions into the logistic mechanism-based model, the factor weights of disease
occurrence and development mechanism in the disease prediction model were quantita-
tively expressed. The disease prediction factors joined with factor weights, which were
input into the KNN model to predict the incidence of wheat FHB in the study area. The
results show that the logistic-KNN model can improve the prediction accuracy and stability
of machine learning models.

In future research, we will consider some important problems. For example, we will
try to use the k-d tree to reduce the computational complexity of the model and make the
model more widely used, and we will try to classify the severity of wheat FHB and achieve
a more accurate prediction of wheat FHB.
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