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Abstract—Quantitative estimation of regional leaf area index 
(LAI) is an important basis for large-scale crop growth monitoring 
and yield estimation. With the development of deep learning, 
theoretically, the use of neural networks can effectively improve 
the accuracy of LAI estimation, but sufficient training samples are 
often required due to a large number of network parameters. In 
an actual regional LAI quantitative estimation, there are only a 
few samples, which is difficult to train in networks. Therefore, a 
crop dual-learning generative adversarial network (CROP-
DualGAN) was proposed in this article for data enhancement of 
small samples to estimate regional LAI. The method uses dual 
learning to generate hyperspectral reflectance and corresponding 
LAI, including two groups of generative adversarial networks, in 
which the generator is used to generate data that conforms to the 
distribution of the training set, and the discriminator is used to 
judge the true or false generated samples. The generators and 
discriminators are constantly optimized in the confrontation so 
that the distribution of generated data is closer to that of training 
samples. In single crop type experiments, 30 training samples with 
enhanced in VGG16 achieved the R2 of cereal, maize and rape seed 
as 0.921, 0.990 and 0.956, and in SSLLAI-Net achieved the R2 of 
cereal, maize and rape seed as 0.971, 0.991 and 0.962. In multiple 
crop types experiments, the result is lower than individual crop 
estimation, but higher than that of without enhancement. Finally, 
non-parametric test is used to prove that most improvement in 
LAI estimation is significant, and the accuracy won’t decrease 
when improvement is not significant. In all, proposed method is 
universal and can effectively help benchmark models to improve 
regional LAI estimation accuracy with neural networks. 
 

Index Terms—Leaf Area Index, Hyperspectral, Remote 
Sensing, CROP-DualGAN, data enhancement. 

I. INTRODUCTION 
EAF area index (LAI) reflects crop growth as a 
significant biological parameter [1], thereby providing 
structured qualitative information to describe the 

conversion process between material on a vegetation canopy 
and energy. LAI plays an important role in the quantitative 
remote sensing of vegetation, ecosystem carbon cycling, 
vegetation productivity, energy balancing among vegetation, 
soil, and the atmosphere, and so on [2]. LAI is a crucial input 
parameter in ecological models and land surface models. It is 
often used as an indicator of vegetation conditions and is also 
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an important agricultural index for monitoring crop growth and 
estimating production [3]. Therefore, it is of great significance 
to quantitively acquire spatiotemporally continuous regional 
LAI for crop growth monitoring and yield estimation [4]. 

Field LAI measurement methods include conventional direct 
measurement on the ground and remote sensing technology [5]. 
Because direct measurement has difficulty handling long time-
series LAI observations in a large area [6], [7], and remote 
sensing technology provides an effective way to quickly and 
timely obtain regional LAI and has thus become an LAI 
monitoring trend [8], [9]. At present, LAI estimation methods 
mainly include statistical models, physical models, and data 
assimilation. Statistical methods, such as highly correlated 
statistical models, have high coefficients of determination, but 
poor for regional promotion [10]-[13]. Physical models face ill-
posed problems due to complexity and are highly dependent on 
the authenticity of radiative transfer model simulations and 
proper model parameter initializations [14]-[16]. Data 
assimilation method is affected by the utilized observation 
variables and crop growth models. Each assimilation method 
has its application scope and conditions [17], [18]. 

Recently, with the development of machine learning, many 
machine learning methods have successively emerged to realize 
large regional LAI estimation based on parts of bands or 
vegetation indices [5], [19], [20]. The widely used machine 
learning methods for LAI estimation are artificial neural 
networks (ANNs), support vector machines (SVMs), random 
forests (RFs), ensembles of trees (ETs), regression trees (RTs), 
radial basis functions (RBFs), generalized regression neural 
networks (GRNNs), Gaussian process models (GPMs) and 
Deep Belief Networks (DBNs) [20]-[22]. ANNs fit well on 
complex, high-dimensional, and nonlinear data, and have high 
accuracy. SVMs similarly support high-dimensional inputs in 
regression models, but they need fewer training samples than 
ANNs. RF has high precision, high calculation speed, and 
robustness in parameter estimation, and it can rank variables 
according to their importance in LAI estimation [13], [19], [23]. 
Machine learning can improve the precision of estimation over 
that of traditional estimation methods, but it is very dependent 

Beijing 100094, China (e-mail: lixl@aircas.ac.cn). 
Y.Y. Dong and W. J. Huang are with the State Key Laboratory of Remote 

Sensing Science, Aerospace Information Research Institute, Chinese Academy 
of Sciences, Beijing 100094, China, and the University of Chinese Academy of 
Sciences, Beijing 100049, China (e-mail: dongyy@aircas.ac.cn; 
huangwj@aircas.ac.cn). 

Y.N. Zhu is with the School of Mathematical Sciences, Capital Normal 
University, Beijing 100048, China (e-mail: ynzhu@cnu.edu.cn). 

 

L 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3230354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:lixl@aircas.ac.cn
mailto:dongyy@aircas.ac.cn


2 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
on the number of measured training samples. Therefore, 
sufficient training samples are needed for model training, and 
the uncertainty of band combinations may affect the accuracy 
of LAI estimation [21], for which Bayesian networks are 
normally used to select hyperspectral bands for modeling [24], 
[25]. 

This article utilizes the self-learning characteristic of deep 
learning to solve the problems of machine learning in LAI 
estimation. We select all the hyperspectral bands reflectance as 
the network inputs for LAI estimation, according to a prior 
knowledge. Usually, neural networks need sufficient training 
samples [21], because many parameters are utilized (the 
number of parameters generally reaches 109). However, in 
actual regional LAI estimation, a few measured samples are 
obtained, which is difficult to train well in general neural 
networks. Aiming at using small samples to estimate 
parameters, it can be solved in two ways: one is to use Bayesian 
estimation with incorporating prior information to reduce 
severely biased estimates [26] or light-weight network to 
complete regression estimation [27, 28], the other is to realize 
data enhancement for small samples by deep learning [29, 30]. 
Adversarial networks can be used in computer vision to realize 
unsupervised dual learning in image-to-image translation [31]. 
Yi et al. [32], Qu et al. [33], and Omdal [34] utilized a dual 
generative adversarial network (DualGAN) to complete image-
to-image translation. Li et al. [35] detected outliers and 
Prokopenko et al. [36] used an improved DualGAN to generate 
synthetic computed tomography images. In addition, 
adversarial networks have more applications [37], [38]. Thus, 
we consider utilizing DualGAN to realize data enhancement for 
small samples and then achieve the purpose of LAI estimation 
by benchmark models. 

II. METHOD 

A. CROP-DualGAN 
A DualGAN is a GAN with dual learning capabilities that 

contains two groups of generators and discriminators. 
Generators are used to generate data with a distribution that is 
subject to the training samples distribution. Discriminators 
judge the true or false generated samples. Generators and 
discriminators can be continuously optimized during the 
confrontation to make the distribution of generated data much 
closer to that of the training samples. We aim to generate pairs 
of hyperspectral reflectance and LAI by the DualGAN. Original 
DualGAN can be modified according to research data, and 
called crop dual-learning generative adversarial network 
(CROP-DualGAN), as shown in Fig. 1. The generator for 
generating LAI is denoted as 𝐺𝐺𝐴𝐴, the generator for generating 
hyperspectral reflectance is denoted as 𝐺𝐺𝐵𝐵 , and the 
corresponding discriminators are denoted as 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝐵𝐵. 

The domain 𝑈𝑈 contains all original hyperspectral reflectance 
and generated hyperspectral reflectance, and the domain 𝑉𝑉 
contains all original LAI and generated LAI. As shown in Fig.1, 
the hyperspectral reflectance denoting 𝑢𝑢 ∈ 𝑈𝑈 is translated to the 
domain 𝑉𝑉 by 𝐺𝐺𝐴𝐴, and the generated LAI 𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧) in domain 𝑉𝑉 
is evaluated by 𝐷𝐷𝐴𝐴 , where 𝑧𝑧  denotes random noise. Then, 

𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧) is translated back to the domain 𝑈𝑈 by 𝐺𝐺𝐵𝐵 , obtaining 
reconstructed hyperspectral reflectance called 𝐺𝐺𝐵𝐵(𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧), 𝑧𝑧′), 
where 𝑧𝑧′  denotes random noise as well. Similarly, the LAI 
denoting 𝑣𝑣 ∈ 𝑉𝑉  is translated as generated reconstructed 
hyperspectral called 𝐺𝐺𝐵𝐵(𝑣𝑣, 𝑧𝑧′) in domain 𝑈𝑈, and then 𝐺𝐺𝐵𝐵(𝑣𝑣, 𝑧𝑧′) 
is translated back as reconstructed LAI called 𝐺𝐺𝐴𝐴(𝐺𝐺𝐵𝐵(𝑢𝑢, 𝑧𝑧′), 𝑧𝑧) 
in domain 𝑉𝑉 . 𝐷𝐷𝐴𝐴  is trained with 𝑣𝑣  and 𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧)  as positive 
samples and negative examples, separately. While 𝐷𝐷𝐵𝐵 is trained 
with 𝑢𝑢 as positive samples, and 𝐺𝐺𝐵𝐵(𝑣𝑣, 𝑧𝑧′) as negative samples. 
𝐺𝐺𝐴𝐴 and 𝐺𝐺𝐵𝐵 are optimized by blinding the corresponding 𝐷𝐷𝐴𝐴 and 
𝐷𝐷𝐵𝐵 and minimize the two reconstruction losses. 

 
Fig. 1. Network architecture and data flow chart of CROP-DualGAN for 
hyperspectral reflectance and LAI translation. 
 
𝐺𝐺𝐴𝐴  is a network for generating LAI according to 

hyperspectral reflectance, and the network contains seven basic 
residual blocks. The structure of the 𝐺𝐺𝐴𝐴 network is shown in 
Fig. 2(a). In the basic residual blocks, the main path stacks two 
convolution layers with one-dimensional convolution kernel 
sizes as 3. Furthermore, the padding is set to the same values, 
and all convolution layers are activated by a rectified linear unit 
(ReLU). Two shortcut cases can be described as below. One is 
that when the numbers of channels in the main path and shortcut 
are different, we need a one-dimensional convolution with its 
kernel size as 1 to make the number of channels in the shortcut 
equal to that of main path (the residual block is shown in Fig. 
2(b)). The other is that when the numbers of channels are the 
same, the shortcut’s value is the output of the last residual block 
(the residual block is shown in Fig. 2(c)). The features learned 
by the residual block are obtained by adding the values of the 
main path and shortcut. Then, the mentioned features activated 
by the ReLU are the final outputs of this residual block. The 
outputs are used as the inputs of the maximum pooling layer for 
down sampling. The maximum pooling can reduce dimension 
and remove redundant information whose size is set to 2 
normally and step size is consistent with it [39]. Padding size is 
set to 1 to fill the boundary, and other parameters setting to 0 
represent default. 
𝐺𝐺𝐵𝐵  is a network for generating hyperspectral reflectance 

according to LAI, where the inputs are LAI and the outputs are 
hyperspectral reflectance with 244 bands. The generation 
procedure is a process of mapping from low-dimensional data 
to high-dimensional data. The structure of the 𝐺𝐺𝐵𝐵  network is 
shown in Fig. 3. The first layer of 𝐺𝐺𝐵𝐵 is a fully connected layer 
with 16 neurons, meaning that the LAI values are mapped to 
16-dimensional vectors. Then, the network repeats 
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deconvolution and convolution operations, finally obtaining 
hyperspectral reflectance at the output layer. 𝐺𝐺𝐵𝐵 is stimulated 
by the fusion of decoded features and encoded features in U-
Net [39]. However, it does not utilize channel stitching to fuse 
features. It adds only the convolutional features in 𝐺𝐺𝐴𝐴  to the 
corresponding deconvolution features in 𝐺𝐺𝐵𝐵. The prerequisite is 

 
Fig. 2. 𝐺𝐺𝐴𝐴 network for generating LAI. (a) is 𝐺𝐺𝐴𝐴 network. (b) is network of the 
block1, block2, block3, block4, block5 and block7. (c) is the network of the 
block6. 
 
that the dimensions of the features in the convolution step and 
the corresponding up sampling step are the same. And when 
they are different, the features with higher dimensions need to 
be center cropped. The features extracted by deconvolution 
possess only one dimension more than the features extracted by 
convolution, so we remove the last one-dimensional feature. In 
short, 𝐺𝐺𝐵𝐵 repeats deconvolution, feature fusion and convolution 
operations to obtain more reliable hyperspectral reflectance. 
The size of the one-dimensional deconvolution kernel is 2, 
which is the step size. The size of the one-dimensional 
convolution kernel is 3, the step size is set to 1, and padding is 
the same as above. 
 

 
Fig. 3. GB network for generating hyperspectral reflectance. 

The 𝐷𝐷𝐴𝐴  is a fully connected network with four layers 
activated by LeakyReLU (its constant λ is set to 0.2). In 𝐷𝐷𝐴𝐴, the 
numbers of neurons in the order layers are 512, 256, 128, and 
1. The input of 𝐷𝐷𝐴𝐴 is hyperspectral reflectance, and its output is 
a probability that discriminates generated data from real data. 
𝐷𝐷𝐵𝐵  is slightly different from 𝐷𝐷𝐴𝐴 , which has three fully 
connected layers with 16, 16, and 1 neuron. 

B. Loss Functions 
The loss functions of 𝐺𝐺𝐴𝐴  and 𝐺𝐺𝐵𝐵  are optimized 

simultaneously, and their optimizations are related to 
minimized reconstruction errors. 

 
            𝑙𝑙𝑔𝑔(𝑢𝑢, 𝑣𝑣) = 𝜆𝜆𝑈𝑈‖𝑢𝑢 − 𝐺𝐺𝐵𝐵(𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧), 𝑧𝑧′)‖

+ 𝜆𝜆𝑉𝑉‖𝑣𝑣 − 𝐺𝐺𝐴𝐴(𝐺𝐺𝐵𝐵(𝑣𝑣, 𝑧𝑧′), 𝑧𝑧)‖
− 𝐷𝐷𝐴𝐴�𝐺𝐺𝐵𝐵(𝑢𝑢, 𝑧𝑧′)� − 𝐷𝐷𝐵𝐵�𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧)� 

(1) 

Where ‖𝑢𝑢 − 𝐺𝐺𝐵𝐵(𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧), 𝑧𝑧′)‖ and ‖𝑣𝑣 − 𝐺𝐺𝐴𝐴(𝐺𝐺𝐵𝐵(𝑣𝑣, 𝑧𝑧′), 𝑧𝑧)‖ are 
two reconstruction losses, and 𝜆𝜆𝑈𝑈  and 𝜆𝜆𝑉𝑉  are two constants 
parameters. In our study, they are equal to 5. 

The loss functions of 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝐵𝐵 are optimized respectively. 
They all add gradient penalties to the initial discriminator loss 
functions of the GAN [40]. The reason for this setting is that if 
the discriminators are optimal during training, the generators 
will encounter gradient disappearance problems and lack 
diversity. Based on previous research and summaries [41]-[43], 
the above problems can be prevented by adding gradient 
penalties. 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝐵𝐵 can be defined as: 

 
𝑙𝑙𝐴𝐴𝑑𝑑(𝑢𝑢, 𝑣𝑣) = 𝐷𝐷𝐴𝐴�𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧)� − 𝐷𝐷𝐴𝐴(𝑣𝑣)

+ 𝜆𝜆𝜆𝜆𝑥𝑥�𝜖𝜖𝑉𝑉��‖∇𝑥𝑥�𝐷𝐷𝐴𝐴(𝑥𝑥�)‖𝑝𝑝 − 1�2 
(2) 

 
𝑙𝑙𝐵𝐵𝑑𝑑(𝑢𝑢, 𝑣𝑣) = 𝐷𝐷𝐵𝐵�𝐺𝐺𝐵𝐵(𝑢𝑢, 𝑧𝑧′)� − 𝐷𝐷𝐵𝐵(𝑢𝑢)

+ 𝜆𝜆𝜆𝜆𝑥𝑥𝜖𝜖𝑈𝑈��‖∇𝑥𝑥𝐷𝐷𝐵𝐵(𝑥𝑥)‖𝑝𝑝 − 1�2 
(3) 

where 𝜆𝜆 is a gradient penalty constant, ∇, 𝜆𝜆 and ‖∙‖𝑝𝑝 represent 
gradient, mathematical expectation and p-norm, respectively. 
Here, 𝜆𝜆 = 10 and 𝑝𝑝 = 2. 𝑥𝑥� in 𝑉𝑉�  and 𝑥𝑥 in 𝑈𝑈� are defined as: 

 𝑥𝑥� = 𝜀𝜀𝑣𝑣 + (1 − 𝜀𝜀)𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧) (4) 

 𝑥𝑥 = 𝜀𝜀𝑢𝑢 + (1 − 𝜀𝜀)𝐺𝐺𝐵𝐵(𝑣𝑣, 𝑧𝑧′) (5) 
where 𝜀𝜀 𝜖𝜖 [0,1]. 

C. Hyperparameter Settings 
We utilize the root mean squared propagation (RMSProp) 

algorithm to optimize the loss functions. But the choice of 
hyper-parameters is always a challenge, so we take a try and 
trail way to manually search for optimal parameters in a scope. 
The hyperparameters of RMSProp in 𝐷𝐷𝐴𝐴  and 𝐷𝐷𝐵𝐵  are set as 
follows. 𝛽𝛽2 is 0.99, and the weight decay is 0.9. They are set to 
0.95 and 0.9 in 𝐺𝐺𝐴𝐴 and 𝐺𝐺𝐵𝐵, respectively. In addition, we provide 
a series of settings. For example, the initial weights are subject 
to a Gaussian distribution with a mean value as 0 and a standard 
deviation as �2/𝑛𝑛 (where 𝑛𝑛 is the number of weights in every 
layer) [44]. All biases are 0, the learning rate η is 2 × 10−4, and 
the batch size is 4. 

D. Training 
The generators and discriminators alternately update in the 
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networks. When generators 𝐺𝐺𝐴𝐴 and 𝐺𝐺𝐵𝐵 are fixed, discriminators 
𝐷𝐷𝐴𝐴  and 𝐷𝐷𝐵𝐵  are trained. 𝐷𝐷𝐴𝐴  is optimized by correctly 
discriminating 𝑣𝑣 as true while 𝐺𝐺𝐴𝐴(𝑢𝑢, 𝑧𝑧) is false. Similarly, 𝐷𝐷𝐵𝐵 is 
optimized by correctly discriminating 𝑢𝑢 as true while 𝐺𝐺𝐵𝐵(𝑣𝑣, 𝑧𝑧′) 
is fake. Similarly, when discriminators 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝐵𝐵 are fixed, 𝐺𝐺𝐴𝐴 
and 𝐺𝐺𝐵𝐵 are trained. 𝐺𝐺𝐴𝐴 and 𝐺𝐺𝐵𝐵 are optimized simultaneously to 
emulate “fake” outputs to blind the corresponding 
discriminators. To get better generators, we train the 
discriminators for 1 step and generators for 5 steps. The 
network tends to be stable as losses are within a certain range. 

E. Enhanced Data Selection 
Due to DualGAN is an unsupervised dual learning network 

for image-to-image translation, the generators 𝐺𝐺𝐴𝐴  and 𝐺𝐺𝐵𝐵  are 
structured by U-Net. Discriminators can contain fully 
connected layers or add additional convolution layers 
appropriately [31]. The outputs in discriminators evaluate the 
similarity between fake data and true data. When training is 
finished, many generated data can be obtained. Generally, 
images with precisely aligned pixel features in domains 𝑈𝑈 and 
𝑉𝑉 are screened by humans [32], which is a subjective process. 

For solving the problems of existing data screening methods, 
and ensuring that the distribution of select generated samples is 
much closer to the training samples distribution, we propose a 
more objective and reasonable method to select samples 
generated. According to the training samples written by X =
𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛, the generated samples are divided into n sets 
written by 𝐺𝐺𝑥𝑥1 = 𝑥𝑥11, 𝑥𝑥12,⋯ , 𝑥𝑥1𝑛𝑛1 , 𝐺𝐺𝑥𝑥2 = 𝑥𝑥21, 𝑥𝑥22,⋯ , 𝑥𝑥2𝑛𝑛2 ,⋯, 
and 𝐺𝐺𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛1, 𝑥𝑥𝑛𝑛2,⋯ , 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 . 𝐺𝐺𝑥𝑥1 ,  𝐺𝐺𝑥𝑥2 ,  ⋯, 𝐺𝐺𝑥𝑥𝑛𝑛  are sorted by 
errors from small to large, separately. Then, 𝐺𝐺𝑥𝑥1

′ =
𝑥𝑥11′ , 𝑥𝑥12′ ,⋯ , 𝑥𝑥1𝑛𝑛1

′ ,  𝐺𝐺𝑥𝑥2
′ = 𝑥𝑥21′ , 𝑥𝑥22′ ,⋯ , 𝑥𝑥2𝑛𝑛2

′ ,  ⋯ , and 𝐺𝐺𝑥𝑥𝑛𝑛
′ =

𝑥𝑥𝑛𝑛1′ , 𝑥𝑥𝑛𝑛2′ ,⋯ , 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛
′  are obtained. Finally, selected the generated 

samples from 𝐺𝐺𝑥𝑥1
′ , 𝐺𝐺𝑥𝑥2

′ ,  ⋯ ,and 𝐺𝐺𝑥𝑥𝑛𝑛
′  in turn, combined with 

initial training samples to estimate LAI. 

III. EXPERIMENTS 

A. Experimental Flow 
CROP-DualGAN realizes data enhancement for the initial 

training samples. Then, generated samples selected by proposed 
rules with initial training samples to estimate LAI based on 
benchmark models. Finally, the LAI estimation in this article is 
compared with the result of without enhancement and random 
selection. 

B. Experimental Data 
EnMAP data, including hyperspectral reflectance and LAI 

products, are openly published by the European Space Agency 
(http://www.enmap.org/). The research area is located in the 
alpine foothills of Germany (48.0514° N，111.0760° E), and 
obtained on July 22, 2006. It shows cereal, maize, and rape seed 
in the middle and late growth stages. Atmospherically corrected 
[45] hyperspectral reflectance has 244 bands in the range of 
420-2460 nm, where the spatial resolution is 30 meters. The 
LAI products are obtained by the inverse process of the coupled 
soil-leaf-canopy model [46]. 

C. Preprocessing 
In the EnMAP data, the range of the original hyperspectral 

reflectance is within 10000, and the LAI range is from 0 to 7. 
Here are two ways in data preprocessing. One is that 
hyperspectral reflectance needs to be reduced by 1000 times, 
while original LAI need not be preprocessed for CROP-
DualGAN to enhance samples. The other way is that generated 
hyperspectral reflectance needs to be reduced by 10 times for 
benchmark models estimation, and the original hyperspectral 
reflectance needs to be reduced by 10000 times. The 
normalization of the generated LAI and original LAI is defined 
by Eq. (6): 

 𝑦𝑦 =
LAI − LAI𝑚𝑚𝑚𝑚𝑛𝑛

LAI𝑚𝑚𝑚𝑚𝑥𝑥 − LAI𝑚𝑚𝑚𝑚𝑛𝑛
 (6) 

where 𝑦𝑦 is the normalized LAI. 
Then, the preprocessed samples are put into the LAI 

estimation benchmark models for training. 

D. Benchmark Models 
Original training samples with selected enhanced data are put 

into benchmark models to estimate the LAI. In this article, 
Visual Geometry Group 16 (VGG16) [47] and Small Samples 
Learning LAI-Net (SSLLAI-Net) [27] are regarded as the 
benchmark models to estimate LAI. Due to VGG16 and 
SSLLAI-Net represent two different types of networks, where 
VGG16 with many parameters is a general classical regression 
network for estimation which can be applied to the research of 
manuscript and SSLLAI-Net is a light-weight neural network 
which is dedicated to LAI estimation supporting small samples 
training. 

VGG16 consists 16 weight layers, including 13 convolution 
layers and 3 fully connected layers. In addition, VGG16 has 5 
pooling layers without weights. In the convolution layers, the 
one-dimensional convolution kernel size is 3, and the feature 
dimensions remain unchanged after the convolution layers. In 
the pooling layers, the pool size and step size of one-
dimensional pooling are set to 2. In the fully connected layers, 
the numbers of neurons in the three layers with dropout are 512, 
512, and 1. The initialization weights of VGG16 are subject to 
a Gaussian distribution with the mean value as 0 and standard 
deviation as �2/𝑛𝑛 (where 𝑛𝑛 is the number of weights in every 
layer). The learning rate η is 0.0001. 

SSLLAI-Net is a light-weight neural network containing two 
convolution layers, one pooling layer, and three fully connected 
layers. The kernel size and step size of the one-dimensional 
convolution are both 3. The numbers of channels in the first and 
second convolution layers are 4 and 16, respectively. The 
maximum pooling layer is connected after the second 
convolution layer, whose pooling size and step size are 3. The 
fully connected layers possess 32, 8, and 1 neuron. In addition, 
the first connection layer sets the dropout. Similar to VGG16, 
the initialization weights of SSLLAI-Net are also subject to a 
Gaussian distribution with the mean value as 0 and standard 
deviation as �2/𝑛𝑛 . Its initial learning rate η is 0.01, which 
decreases with iterations increasing. 
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E. Results 

Two experiments are presented in this section. One is that 
200, 100, 50, and 30 initial training samples are selected 
randomly according to the proportion of cereal 66.6%, maize 
15.6%, and rape seed 17.8%, separately, and enhanced to 500 
by CROP-DualGAN and proposed selection method. Similarly, 
the other is that 300 and 200 initial training samples are selected 
randomly according to the proportion of three kinds of crops, 
and enhanced to 1000. After training, the test accuracy in this 
article is compared with the accuracy of without enhancement 
and random selection. To avoid accidental results, every 
experiment is repeated 10 times, and average value was taken 
as final accuracy, standard deviation as measure of stability. 
Finally, Kruskal-Wallis H Test belonging to non-parametric 
test is used to prove whether the improvement in LAI 
estimation is significant. 

TABLE I 
COMPARISION RESULTS OF THE R2 IN VGG16 (MEAN ± 

STANDARD DEVIATION) 

 
Note: p is a value in Kruskal-Wallis H Test compared VGG16 and CROP-DualGAN-VGG16, 
and significance level is 0.05. 

TABLE Ⅱ 
COMPARISION RESULTS OF THE RMSE IN VGG16 (MEAN ± 

STANDARD DEVIATION) 

 
Note: p is a value in Kruskal-Wallis H Test compared VGG16 with CROP-DualGAN-VGG16, 
and significance level is 0.05. 
 

In the single crop type experiments, Table Ⅰ and Table Ⅱ list 
the 𝑅𝑅2 and RMSE of VGG16, separately. Similarly, Table Ⅲ 
and Table Ⅳ list those of SSLLAI-Net. It can be seen that 
proposed method achieves higher accuracy and more stable in 
both VGG16 and SSLLAI-Net, most improvement in LAI 
estimation is significant, and the accuracy won’t decrease when 
improvement is not significant. For Table Ⅰ and Table Ⅱ, it is 
clear that cereal and rape seed with 30, 50, and 100 initial 
training samples show that the accuracy of estimation is 
improved significantly with data enhancement (p-value is 
smaller than 0.05). While the results of cereal with 200 initial 
training samples are not significant, but won’t be lower than 
VGG16. Maize in CROP-DualGAN-VGG16 is not significant 
because these have performed well in VGG16, resulting in 
limited improvement, but the accuracy of LAI estimation in 
CROP-DualGAN-VGG16 won’t be lower than that of VGG16, 
too. Similarly, for Table Ⅲ and Table Ⅳ, cereal and maize with 
30, 50, and 100 initial training samples, and rape seed with 30, 
50, 100 and 200 initial training samples show that the accuracy 
of estimation is improved significantly based on CROP-
DualGAN-SSLLAI (p-value is smaller than 0.05). While the 
results of cereal and maize with 200 initial training samples are 
not significant, because SSLLAI-Net is a light-weight network 
supporting small samples training, and the R2 of cereal and 
maize has achieved 0.989 and 0.995, resulting in limited 
improvement, but the accuracy of LAI estimation in CROP-
DualGAN-SSLLAI is still higher than that of SSLLAI-Net.  

TABLE Ⅲ 
COMPARISION RESULTS OF THE R2 IN SSLLAI-NET (MEAN ± 

STANDARD DEVIATION)

 
Note: p is a value in Kruskal-Wallis H Test compared SSLLAI-Net with CROP-DualGAN-
SSLLAI, and significance level is 0.05. 
 

In addition, SSLLAI-Net is better than VGG16 for LAI 
estimation because that is a light-weight network for small 
samples training. VGG16 cannot reach the ideal accuracy in the 
case of small samples, but it can improve accuracy of crop 
estimation with the help of CROP-DualGAN. For the crop type, 
the accuracy of LAI estimation is related to its distribution of 
various crops which is shown in Fig.4. We can see that the LAI 
distribution of cereal, maize, and rape seed is most within 
LAI = 3. Besides, some LAI of cereal and rape seed are also 

Category 

30 50 

VGG16 
Random 

-VGG16 

CROP-DualGAN 

-VGG16 
VGG16 

Random 

-VGG16 

CROP-DualGAN 

-VGG16 

Cereal 
0.840 

±0.039 

0.903 

±0.046 

0.921 

±0.036 
p=0.0007 

0.884 

±0.050 

0.921 

±0.048 

0.943 

±0.042 
p=0.0025 

Maize 
0.987 

±0.006 

0.987 

±0.004 

0.990 

±0.004 
p=0.0817 

0.993 

±0.004 

0.994 

±0.004 

0.995 

±0.001 
p=0.8197 

Rape seed 
0.924 

±0.021 

0.939 

±0.026 

0.956 

±0.010 
p=0.0032 

0.937 

±0.036 

0.966 

±0.009 

0.965 

±0.011 
p=0.0319 

Category 

100 200 

VGG16 
Random 

-VGG16 

CROP-DualGAN 

-VGG16 
VGG16 

Random 

-VGG16 

CROP-DualGAN 

-VGG16 

Cereal 
0.920 

±0.021 

0.931 

±0.038 

0.954 

±0.014 
p=0.0011 

0.964 

±0.015 

0.966 

±0.018 

0.974 

±0.008 
p=0.0692 

Maize 
0.996 

±0.001 

0.996 

±0.002 

0.997 

±0.0008 
p=0.1004 

0.998 

±0.0008 

0.998 

±0.0007 

0.998 

±0.0007 
p=0.9313 

Rape seed 
0.963 

±0.011 

0.978 

±0.006 

0.979 

±0.006 
p=0.0045 

0.977 

±0.006 

0.984 

±0.005 

0.986 

±0.003 
p=0.0010 

 

Category 

30 50 

VGG16 
Random 

-VGG16 

CROP-DualGAN 

-VGG16 
VGG16 

Random 

-VGG16 

CROP-DualGAN 

-VGG16 

Cereal 
0.677 

±0.089 

0.518 

±0.122 

0.470 

±0.113 
p=0.0012 

0.573 

±0.122 

0.464 

±0.146 

0.394 

±0.122 
p=0.0032 

Maize 
0.156 

±0.041 

0.165 

±0.029 

0.132 

±0.030 
p=0.2505 

0.105 

±0.038 

0.108 

±0.040 

0.091 

±0.015 
p=0.6746 

Rape seed 
0.406 

±0.060 

0.362 

±0.073 

0.312 

±0.037 
p=0.0019 

0.373 

±0.115 

0.280 

±0.039 

0.282 

±0.053 
p=0.0243 

Category 

100 200 

VGG16 
Random 

-VGG16 

CROP-DualGAN 

-VGG16 
VGG16 

Random 

-VGG16 

CROP-DualGAN 

-VGG16 

Cereal 
0.464 

±0.063 

0.424 

±0.114 

0.360 

±0.052 
p=0.0019 

0.310 

±0.077 

0.295 

±0.084 

0.270 

±0.040 
p=0.0342 

Maize 
0.080 

±0.011 

0.085 

±0.019 

0.077 

±0.008 
p=0.5432 

0.063 

±0.010 

0.062 

±0.009 

0.064 

±0.010 
p=0.8201 

Rape seed 
0.278 

±0.042 

0.218 

±0.031 

0.216 

±0.047 
p=0.0155 

0.223 

±0.028 

0.186 

±0.026 

0.176 

±0.020 
p=0.0013 

 

Category 

30 50 

SSLLAI 
Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 
SSLLAI 

Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 

Cereal 
0.950 

±0.019 

0.968 

±0.021 

0.971 

±0.008 
p=0.0140 

0.969 

±0.015 

0.976 

±0.011 

0.982 

±0.010 
p=0.0072 

Maize 
0.966 

±0.018 

0.983 

±0.007 

0.991 

±0.007 
p=0.0009 

0.986 

±0.006 

0.992 

±0.005 

0.994 

±0.005 
p=0.0039 

Rape seed 
0.936 

±0.026 

0.961 

±0.009 

0.962 

±0.014 
p=0.0342 

0.952 

±0.019 

0.971 

±0.010 

0.977 

±0.006 
p=0.0015 

Category 

100 200 

SSLLAI 
Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 
SSLLAI 

Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 

Cereal 
0.976 

±0.015 

0.979 

±0.007 

0.986 

±0.003 
p=0.0267 

0.989 

±0.007 

0.990 

±0.007 

0.992 

±0.002 
p=0.1763 

Maize 
0.993 

±0.003 

0.994 

±0.005 

0.996 

±0.001 
p=0.0077 

0.995 

±0.003 

0.996 

±0.003 

0.997 

±0.002 
p=0.1526 

Rape seed 
0.978 

±0.006 

0.981 

±0.006 

0.987 

±0.004 
p=0.0027 

0.986 

±0.004 

0.983 

±0.004 

0.990 

±0.002 
p=0.0325 
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distributed around LAI = 7, and a few between LAI = 4 and 
LAI = 7. Therefore, it causes data imbalance, and estimated 
errors mainly come from around LAI = 7. Compared with the 
distribution of cereal and rape seed, here are more LAI of maize 
distributed between LAI = 4 and LAI = 7. And fewer around 
LAI = 7, so the estimated accuracy of maize is higher than 
those of cereal and rape seed. Fig.5 and Fig.6 show the LAI 
estimation of VGG16 and SSLLAI-Net, respectively, based on 
30 initial training samples.  

TABLE Ⅳ 
COMPARISION RESULTS OF THE RMSE IN SSLLAI-NET (MEAN ± 

STANDARD DEVIATION) 

 
Note: p is a value in Kruskal-Wallis H Test compared SSLLAI-Net with CROP-DualGAN-
SSLLAI, and significance level is 0.05. 

In the multiple crop types experiments, Table Ⅴ and Table 
Ⅵ list the 𝑅𝑅2  and RMSE obtained for three kinds of crops, 
respectively. Compared with single crop type experiments, the 
accuracy of rape seed together with cereal and maize is 
obviously lower than individual crop estimation. Due to 
benchmark models estimating LAI are data-driven methods, 
that is learning the relationship between hyperspectral 
reflectance and corresponding LAI, so the accuracy of LAI 
estimation is affected by data distribution. As shown in Fig.4, 
distribution for LAI of cereal, maize and rape seed is different. 
Therefore, the accuracy of cereal together with maize and rape 
seed is lower than cereal estimation individually, so are maize 
and rape seed. For Table Ⅴ and Table Ⅵ, the improvement of 
LAI estimation is significantly in CROP-DualGAN-SSLLAI. 
In CROP-DualGAN-VGG16, cereal and rape seed with 200 
initial training samples shows that the accuracy of estimation is 
improved significantly and maize shows the results are not 
significant because these have performed well in VGG16. But 
the accuracy of LAI estimation in CROP-DualGAN-VGG16 
don’t be lower than that of VGG16. Fig.7 and Fig.8 show the 
LAI estimation of VGG16 and SSLLAI-Net, respectively, 
based on 200 initial training samples. 

In term of network analysis, CROP-DualGAN can help 
benchmark models estimate LAI more accurate, owing to its 
network structure consist of two pairs of generators and 

corresponding discriminators. Generators are used to generate 
hyperspectral reflectance and LAI, while discriminators judge 
the true or false samples generated by itself. The generators and 
discriminators can be continuously optimized during the 
confrontation to make the distribution of the generated data 
closer to the distribution of training samples. Moreover, the 
proposed data selection ensures samples more balanced. In this 
paper, the Kolmogorov-Smirnov Test is used to test whether the 
initial training samples and the selected generated samples have 
the same distribution, as shown in Fig.9. It can be seen that p-
value > 0.05 which is the given significance level. That is, the 
samples enhanced by CROP-DualGAN have the same 
distribution as the initial training samples, so it is the rationality 
of data augmentation to effective LAI estimation improvement. 

TABLE Ⅴ 
COMPARISION RESULTS OF THE R2 IN THE BENCHMARK 

MODELS (MEAN ± STANDARD DEVIATION) 

 
Note: p is a value in Kruskal-Wallis H Test compared benchmark models with the proposed 
model, and significance level is 0.05. 

TABLE Ⅵ 
COMPARISION RESULTS OF THE RMSE IN THE BENCHMARK 

MODELS (MEAN ± STANDARD DEVIATION) 

 
Note: p is a value in Kruskal-Wallis H Test compared benchmark models with the proposed 
model, and significance level is 0.05.

 

Category 

30 50 

SSLLAI 
Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 
SSLLAI 

Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 

Cereal 
0.362 

±0.071 

0.297 

±0.078 

0.290 

±0.053 
p=0.0342 

0.287 

±0.061 

0.264 

±0.056 

0.223 

±0.050 
p=0.0091 

Maize 
0.244 

±0.073 

0.183 

±0.043 

0.131 

±0.052 
p=0.0019 

0.156 

±0.034 

0.118 

±0.054 

0.106 

±0.049 
p=0.0101 

Rape seed 
0.377 

±0.094 

0.293 

±0.039 

0.288 

±0.061 
p=0.0380 

0.325 

±0.077 

0.272 

±0.073 

0.229 

±0.040 
p=0.0025 

Category 

100 200 

SSLLAI 
Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 
SSLLAI 

Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 

Cereal 
0.248 

±0.077 

0.239 

±0.038 

0.198 

±0.019 
p=0.0458 

0.167 

±0.044 

0.162 

±0.049 

0.147 

±0.017 
p=0.4488 

Maize 
0.106 

±0.025 

0.098 

±0.033 

0.080 

±0.013 
p=0.0188 

0.085 

±0.032 

0.074 

±0.028 

0.063 

±0.026 
p=0.1121 

Rape seed 
0.218 

±0.025 

0.210 

±0.044 

0.169 

±0.025 
p=0.0015 

0.170 

±0.027 

0.190 

±0.024 

0.146 

±0.018 
p=0.0232 

 

Category 

200 300 

VGG16 
Random 

-VGG16 

CROP-DualGAN 

-VGG16 
VGG16 

Random 

-VGG16 

CROP-DualGAN 

-VGG16 

Cereal 
0.947 

±0.011 

0.955 

±0.008 

0.965 

±0.008 
p=0.0011 

0.960 

±0.016 

0.962 

±0.009 

0.960 

±0.009 
p=0.2554 

Maize 
0.970 

±0.017 

0.970 

±0.028 

0.977 

±0.013 
p=0.2721 

0.982 

±0.011 

0.981 

±0.023 

0.983 

±0.007 
p=0.9022 

Rape seed 
0.873 

±0.044 

0.900 

±0.041 

0.929 

±0.019 
p=0.0015 

0.919 

±0.034 

0.918 

±0.025 

0.926 

±0.022 
p=0.6587 

Category 

200 300 

SSLLAI 
Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 
SSLLAI 

Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 

Cereal 
0.962 

±0.018 

0.960 

±0.017 

0.973 

±0.008 
p=0.0460 

0.964 

±0.017 

0.969 

±0.011 

0.976 

±0.012 
p=0.0490 

Maize 
0.912 

±0.066 

0.945 

±0.060 

0.961 

±0.021 
p=0.0448 

0.940 

±0.042 

0.949 

±0.033 

0.976 

±0.008 
p=0.0058 

Rape seed 
0.893 

±0.049 

0.922 

±0.026 

0.940 

±0.011 
p=0.0190 

0.904 

±0.038 

0.928 

±0.036 

0.943 

±0.010 
p=0.0015 

 

Category 

200 300 

VGG16 
Random 

-VGG16 

CROP-DualGAN 

-VGG16 
VGG16 

Random 

-VGG16 

CROP-DualGAN 

-VGG16 

Cereal 
0.390 

±0.048 

0.353 

±0.032 

0.311 

±0.038 
p=0.0010 

0.326 

±0.058 

0.320 

±0.036 

0.333 

±0.035 
p=0.3445 

Maize 
0.253 

±0.086 

0.248 

±0.113 

0.207 

±0.058 
p=0.2121 

0.185 

±0.070 

0.176 

±0.080 

0.179 

±0.048 
p=0.9397 

Rape seed 
0.549 

±0.098 

0.484 

±0.091 

0.408 

±0.049 
p=0.0017 

0.439 

±0.108 

0.453 

±0.075 

0.425 

±0.070 
p=0.9648 

Category 

200 300 

SSLLAI 
Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 
SSLLAI 

Random 

-SSLLAI 

CROP-DualGAN 

-SSLLAI 

Cereal 
0.331 

±0.065 

0.329 

±0.070 

0.282 

±0.042 
p=0.0413 

0.314 

±0.062 

0.292 

±0.058 

0.254 

±0.056 
p=0.0494 

Maize 
0.425 

±0.194 

0.288 

±0.133 

0.283 

±0.123 
p=0.0476 

0.314 

±0.105 

0.294 

±0.099 

0.208 

±0.049 
p=0.0156 

Rape seed 
0.523 

±0.089 

0.458 

±0.074 

0.390 

±0.039 
p=0.0015 

0.495 

±0.088 

0.435 

±0.077 

0.373 

±0.042 
p=0.0036 
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Fig. 4. Distribution for the LAI of cereal, maize and rape seed. 

 
(a)                                                     (b)                                                                (c) 

    
(d)                                           (e)                                              (f)                                            (g) 

Fig. 5. Comparison of the LAI estimation of VGG16 based on 30 initial training samples and its enhancement. (a) and (b) are LAI estimation of VGG16 and CROP-
DualGAN-VGG16, respectively. (c) is an error histogram, describing the comparison of above two models. It can be seen obviously that the error of CROP-
DualGAN-VGG16 is smaller. (d) and (f) are details of VGG16. (e) and (g) are details of CROP-DualGAN-VGG16.  

 
(a)                                                     (b)                                                                (c) 

    
(d)                                           (e)                                              (f)                                         (g) 

Fig. 6. Comparison of the LAI estimation of SSLLAI-Net based on 30 initial training samples and its enhancement. (a) and (b) are LAI estimation of SSLLAI-Net 
and CROP-DualGAN-SSLLAI-Net, respectively. (c) is an error histogram, describing the comparison of above two models. It can be seen obviously that the error 
of CROP-DualGAN-SSLLAI is smaller. (d) and (f) are details of SSLLAI-Net. (e) and (g) are details of CROP-DualGAN-SSLLAI-Net. 
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(a)                                                      (b)                                                                  (c) 

     
(d)                                           (e)                                              (f)                                            (g) 

Fig. 7. Comparison of the LAI estimation of VGG16 based on 200 initial training samples and its enhancement. (a) and (b) are LAI estimation of VGG16 and 
CROP-DualGAN-VGG16, respectively. (c) is an error histogram, describing the comparison of above two models. It can be seen obviously that the error of CROP-
DualGAN-VGG16 is smaller. (d) and (f) are details of VGG16. (e) and (g) are details of CROP-DualGAN-VGG16. 
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Fig. 8. Comparison of the LAI estimation results of SSLLAI-Net based on 200 initial training samples and its enhancement. (a) and (b) are LAI estimation of 
SSLLAI-Net and CROP-DualGAN-SSLLAI-Net, respectively. (c) is an error histogram, describing the comparison of above two models. It can be seen obviously 
that the error of CROP-DualGAN-SSLLAI is smaller. (d) and (f) are details of SSLLAI-Net. (e) and (g) are details of CROP-DualGAN-SSLLAI-Net. 
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(e)                                                             (f)                                                            (g)                                                           (h) 
Fig. 9. The Kolmogorov-Smirnov results of single crop type experiments and multiple crop types experiments. (a), (b), and (c) represent the significance results in 
cereal, maize and rape seed experiments, separately. (d) represents the significance results in multiple crop types experiments. (e), (f), (g), and (h) are the examples 
of the distribution of initial training samples and its generated, separately.

Ⅳ. Conclusion 
Currently, the problem to estimate LAI with deep learning 

is that measured samples is insufficient, while the CROP-
DualGAN proposed in this paper can solve the above problem 
through data enhancement. Experiments prove that most of the 
samples enhanced by CROP-DualGAN is effective on LAI 
estimation improvement. The proposed method is universal to 
solve insufficient samples. However, in the multiple crop types 
experiments, the accuracy of LAI estimation is obviously 
lower than that of single crop type experiments. In the next 
work, we will focus on solving data imbalance to improve LAI 
estimation in the multiple crop types experiments. Data 
enhancement for small samples to improve LAI estimation can 
be applied to further support crop growth condition monitoring, 
crop stresses (drought, flood, pest, disease, etc.) detection, and 
yield estimation. Moreover, LAI has an important role in the 
calculation of ecosystem carbon sink, so this data enhancement 
method and algorithm can be extended to the crop, forest, grass 
etc. vegetation parameter estimation to support the research in 
the future. 
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