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Abstract: Fusarium head blight, caused by a fungus, can cause quality deterioration and severe
yield loss in wheat. It produces highly toxic deoxynivalenol, which is harmful to human and animal
health. In order to quickly and accurately detect the severity of fusarium head blight, a method of
detecting the disease using continuous wavelet analysis and particle swarm optimization support
vector machines (PSO-SVM) is proposed in this paper. First, seven wavelet features for fusarium
head blight detection were extracted using continuous wavelet analysis based on the hyperspectral
reflectance of wheat ears. In addition, 16 traditional spectral features were selected using correlation
analysis, including two continuous removal transformed spectral features, six differential spectral
features, and eight vegetation indices. Finally, wavelet features and traditional spectral features
were used as input features to construct fusarium head blight detection models in combination with
the PSO-SVM algorithm, and the results were compared with those obtained using random forest
(RF) and a back propagation neural network (BPNN). The results show that, under the same feature
variables, the PSO-SVM detection method gave an overall higher accuracy than the BPNN detection
method, while the overall accuracy of the RF detection model was the lowest. The overall accuracy of
the RF, BPNN and PSO-SVM detection models with wavelet features was higher by 3.7%, 2.9% and
8.3% compared to the corresponding methodological models with traditional spectral features. The
detection model with wavelet features combining the PSO-SVM algorithm gave the highest overall
accuracies (93.5%) and kappa coefficients (0.903) in the six monitoring models. These results suggest
that the PSO-SVM algorithm combined with continuous wavelet analysis can significantly improve
the accuracy of fusarium head blight detection on the wheat ears scale.

Keywords: fusarium head blight; hyperspectral; continuous wavelet analysis; support vector
machine; particle swarm optimization

1. Introduction

Wheat is the most important food crop in the world, and it is a staple food for about
one-third of the world’s population [1]. Therefore, healthy and stable wheat growth is
important in regard to food security. Fusarium head blight (FHB) is one of the main wheat
diseases, which can cause the deterioration of quality and a serious loss of yield [2,3].
Moreover, the pathogen produces toxic deoxynivalenol (DON), which is detrimental to
animal and human health [4]. Therefore, the development of an accurate and fast method
of monitoring FHB is important for the control of this disease.

Conventional detection methods, such as sampling analysis, are mostly performed by
experts and experienced farmers in the field. This approach cannot meet the requirements
for monitoring large areas, and it is time-consuming and laborious [5,6]. Hyperspectral
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remote sensing technology can quickly monitor crop diseases and is suitable for large-
scale applications [7,8]. Owing to these advantages, it developed quickly and has a wide
range of applications in monitoring the spectrum of crop diseases. At present, several
types of spectral features have been mentioned and applied to the spectral detection of
crop diseases, including continuous removal transformed features, vegetation indices and
differential spectral features. For example, Feng et al. [9] analyzed wheat hyperspectral
data using powdery mildew canopy and successfully monitored wheat powdery mildew
based on the normalized differential vegetation index (NDVI) and ratio vegetation index
(RVI). Jing et al. [10] constructed a model for monitoring the severity of wheat rust using
11 differential spectral features and a random forest algorithm, which provided a decision
coefficient of 0.92. Huang et al. [11] constructed a model for FHB monitoring using first-
order differential spectral features, vegetation indices and continuous removal transformed
features combined with a support vector mechanism. Zheng et al. [12] precisely identified
wheat rust using a three-band photochemical reflectance Index (PRI) and anthocyanin
reflectance index (ARI).

In addition to these traditional spectral features (SFs), continuous wavelet analysis
(CWA), as a new tool for signal processing and analysis, has also been applied to hyper-
spectral information extraction [13,14]. Zhang et al. [15] successfully used CWA and partial
least squares regression to estimate the severity of powdery mildew disease at the leaf
level. Chen et al. [16] accurately estimated the nitrogen content in soybean leaf and leaf
carbon content through linear models constructed using CWA. Shi et al. [17] analyzed
hyperspectral data of wheat and successfully distinguished powdery mildew and yellow
rust in wheat using CWA. These results prove the feasibility of CWA for use in crop hy-
perspectral analysis. However, the wavelet features (WFs) obtained by CWA have rarely
been applied to the detection of FHB, and a comparison between traditional SFs and WFs
is lacking, so further research is needed.

In terms of classification methods, support vector machines (SVM) have low data
distribution requirements and can effectively solve the problem of identifying small sample
modes, which are widely used for the spectral detection of crop diseases [18]. However, the
kernel function parameter gamma and penalty factor c of an SVM can dramatically affect
the classification accuracy [19]. The traditional grid search algorithm is inefficient, compu-
tationally intensive, time-consuming and unsatisfactory [20]. Particle swarm optimization
(PSO) can be used to find an optimal solution through inter-individual coordination and
information exchange [21]. PSO is not only easy to implement, but also converges quickly.
Therefore, PSO is widely used to solve model parameter optimization problems.

In this study, WFs and traditional SFs were extracted based on a hyperspectral dataset
of wheat ears. By combining the above two sets of feature variables with three algorithms
(PSO-SVM, RF and BPNN), a total of six detection models for FHB were constructed, and
the accuracy of the detection models was compared. This study aimed to (1) determine
the most appropriate CWA-derived WFs for the detection of FHB in winter wheat ears,
(2) determine the performance of CWA for the detection of FHB through a comparison of
WFs and traditional SFs, and (3) identify the most suitable modeling method by comparing
RF, BPNN and PSO-SVM algorithms.

2. Materials and Methods

The workflow of our study is shown in Figure 1. This study involved four main steps:
data acquisition, feature extraction, model construction and model evaluation. Each step is
described in detail in the following sections. In addition, Python was used for data analysis
and model construction in this study.
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Figure 1. The workflow of the study.

2.1. Experimental Areas

The experimental area is located in Guohe Town, Lujiang County, Anhui Province
(31◦29′ N, 117◦13′ E). Anhui Province is located in eastern China and situated in a subtropi-
cal and warm temperate transition climate zone [11]. The average annual temperature of
the province is 12~19 ◦C, and the annual precipitation is 700~1700 mm [20]. FHB is a typical
climatic disease, and high temperature and humidity are very conducive to the outbreak
of the disease, especially in wheat during tasseling and flowering [22]. According to the
meteorological data of Anhui Province, the study area had large precipitation amounts and
high temperatures in April 2019. At that time, local wheat was in the wheat heading and
flowering stages, which provided favorable conditions for the prevalence of FHB in wheat.

2.2. Data Acquisition

In this experiment, data regarding the hyperspectral reflectance of wheat ears in
different diseases of wheat blast were collected in the field environment during two pe-
riods: 5 and 8 May 2019. An ASD Field Spec Pro FR spectrometer, with a spectral range
of 350~2500 nm, was used in the experiment. The spectral resolution in the region of
350~1000 nm and 1000~2500 nm is 3 nm and 10 nm, respectively. In order to reduce the
influence of the solar zenith angle on the measurement results, all spectral measurements
were conducted between 10:00 and 14:00. In this study, to accurately measure the spectra
of wheat ears, we used a 1 × 1 m black cloth. The wheat ears collected from the field were
placed on the black cloth, and the spectrometer probe was placed on top of the wheat ear
to measure the spectrum (Figure 2). Each wheat ear sample was measured 10 times and the
spectrum was calibrated with a 40 × 40 cm BaSO4 calibration panel before each measure-
ment. An average of the 10 spectra was used as the reflectance spectrum of the wheat ear,
and the spectral curve was resampled to 1 nm. The spectral range from 350 to 1000 contains
the main disease information, while the spectral range from 1000 to 2500 contains little
disease information and more noise, which may affect the detection results. Therefore, only
the spectral range of 350 to 1000 was selected in this study.
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Figure 2. Field survey and FHB-infected ear of winter wheat the three diseases severity: (a) field survey, (b) healthy wheat
ears, (c) wheat ears with mild infection, (d) wheat ears with severe infection.

When collecting the spectrum of each wheat ear, the severity of wheat ear disease
was calculated. According to the technical specification for the prediction of wheat head
blight (GB/T 15796-2011) published and implemented in 2011, the severity of the disease
for each wheat ear is the ratio of the number of infected grains to the total amount of
grains. The severity of the disease ranges from 0 to 1, with 0 denoting healthy samples
and 1 denoting severely infected samples. In this study, 108 samples of wheat ears were
collected. Taking into account the number of samples and the distribution of disease
severity, the disease severity was reclassified into three categories, with 38 healthy samples
(disease severity = 0), 38 samples with mild infection (0 < disease severity < 0.5) and
32 samples with severe infection (disease severity ≥ 0.5).

2.3. Analysis Methods
2.3.1. Continuous Wavelet Analysis

In the study, CWA was performed on the spectral data of reflectance of wheat ears,
which extracted WFs for the detection of wheat FHB. The CWA process is shown in Figure 3,
which is divided into three steps: calculation of the wavelet power scalogram, construction
of the correlation scalogram and identification of WFs by threshold.
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Figure 3. Flowchart of wavelet feature extraction using continuous wavelet analysis.

Step 1: Calculation of the wavelet power scalogram.
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First, the continuous wavelet transform was performed on spectral reflectance data of
wheat ears, and the generic form of the applied mother wavelet basis function is shown in
Equation (1):

ψa,b(λ) =
1√
a

ψ

(
λ− b

a

)
(1)

where a is the scaling factor of the wavelet width and b is the shift factor of the wavelet
position. Based on the absorption characteristics of vegetation indices, this study selected
Mexican caplets [23]. In order to reduce the difficulties in the calculation, only the wavelet
power of the pairwise scales (2n, n = 1, 2 . . . 10) was used [24]. The wavelet energy
coefficients generated by the continuous wavelet transform are obtained using Equation (2):

W f (a, b) = < f (λ), ψa,b > =
∫ +∞

−∞
ψ

(
λ− b

a

)
dλ (2)

where f (λ) is the reflectance spectrum and W f (a, b) is the wavelet energy coefficient.
Step 2: Construction of the correlation scalogram.
The correlation between wavelet energy coefficients and disease severity was analyzed

in order to generate a series of decision coefficients (R2). The m × n matrix is composed
of R2 values of wavelet energy coefficients on different scales in different bands, which
is called a correlation scalogram. This correlation scalogram summarizes the sensitivity
between the wavelet energy coefficients and the severity of the disease [25].

Step 3: Identification of WFs by threshold.
WFs were selected from the correlation spectrogram using the threshold method, i.e., a

5% threshold was used in this study. Thus, 5% of the highest R2 elements in the correlation
spectra were conserved as the wavelet feature regions. Only the elements with the highest
R2 were conserved as WFs for use in FHB detection in each wavelet feature region.

2.3.2. Traditional Spectral Features

To determine the performance of CWA in FHB identification, a total of 16 SFs were
selected for comparison with WFs extracted via CWA (Table 1). Spectral differential
transform and continuum removal transform can eliminate some background effects and
can increase implicit information, so differential spectral features and continuum removal
spectral features are widely used in detecting crop disease spectra [26,27]. In addition,
eight vegetation indices were selected and applied for use in the spectral detection of crop
diseases [11,25,28]: (1) photosynthesis—physiological reflectance index (PHRI); (2) pigment
variation parameters—triangular vegetation index (TVI), anthocyanin reflectance index
(ARI) and normalized pigment chlorophyll index (NPCI); (3) greenness—greenness index
(GI); (4) biophysical parameters—narrow band normalized vegetation index (NBNDVI)
and plant senescence reflectance index (PSRI); and (5) water and nitrogen content—nitrogen
reflectance index (NRI). The sources of definitions, references and descriptions of these
16 traditional SFs are summarized in Table 1.

Table 1. Traditional spectral features selected in the study.

Category Title Definition Description or Formula Reference

Continuous removal
transformed

spectral features

Dep
The depth of the feature

minimum
relative to the hull

In the range 550–750 nm [27,29]

Area

The area of the absorption
feature

that is the product of DEP
and WID

In the range 550–750 nm [27,29]

Vegetation indices PHRI Physiological reflectance
index (R550 − R531)/(R531 + R570) [30]
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Table 1. Cont.

Category Title Definition Description or Formula Reference

TVI Triangular vegetation index 0.5 × 120 (R750 −
R550)–200(R670 − R550)] [31]

ARI Anthocyanin reflectance
index (R550)−1 − (R700)−1 [32]

NBNDVI
Narrow-band normalized

difference
vegetation index

(R850 − R680)/(R850+R680) [33]

NRI Nitrogen reflectance index (R570 − R670)/(R570 + R670) [33]

PSRI Plant senescence
reflectance index (R680 − R500)/R750 [34]

NPCI Normalized total pigment to
chlorophyll a ratio index (R680 − R430)/(R680 + R430) [35]

GI Greenness index R554/R677 [36]

Differential spectral
features Db

First-order maximal derivative
inside blue edge In the range 490–530 nm [37]

SDb
Summation of first-order

derivatives inside blue edge In the range 490–530 nm [37]

SDy
Summation of first-order

derivatives inside yellow edge In the range 550–582 nm [37]

SDr/SDb The ratio of the SDr and SDb SDr/SDb [37]

(SDr − SDb)/
(SDr + SDb)

The normalized value of
The SDr and SDb

(SDr − SDb)/(SDr + SDb) [37]

(SDr − SDy)/
(SDr + SDy)

The normalized value of
the SDr and SDy

(SDr − SDy)/(SDr + SDy) [37]

2.3.3. Model Construction and Evaluation

An SVM cleverly solves the operation of inner product in a high-dimensional space
using the kernel function, so it solves the issue of nonlinear classification [38]. In accordance
with the results of previous studies, the radial basis kernel function (RBF) was used in this
study [39]. However, the RBF kernel parameter gamma and penalty factor c can greatly
affect the accuracy of the classification [40]. PSO is an optimization algorithm, which is easy
to implement because it does not have to adjust too many parameters [19]. The PSO-SVM
detection model construction process is shown in Figure 4, and the steps used in this study
to optimize the SVM using PSO are as follows:

1. The penalty parameter c and the radial basis function parameter gamma are encoded
in the form of real number vectors as the particle positions of PSO. The parameters of
PSO are initialized, such as the number of iterations, population size, inertia factor,
learning factor, and the location and velocity of each particle.

2. The particle fitness value is set as the classification accuracy, and the suitability value
of each particle is calculated on the basis of the position parameters of the initial
particle. The individual particle extremum, Pbest and the population extremum,
Gbest, are updated according to the suitability value.

3. The values of velocity, position and suitability of each particle are recalculated by
iteration, and then the group extreme value, Gbest, and the individual extreme value,
Pbest, are adjusted according to the suitability value in the new population after
the iteration.

4. When the maximum number of iterations is reached, the location parameter of the
particle with the highest suitability value is displayed as the penalty parameter c and
the function parameter gamma.
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5. The optimal penalty parameter c and the radial basis function parameter gamma
obtained via the PSO algorithm are substituted in the SVM for the construction of the
PSO-SVM detection model.
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In addition, to better evaluate the role of the PSO-SVM algorithm in the detection
model, two classical algorithms (RF and BPNN) were used to be compared with the
PSO-SVM algorithm [41,42]. A total of six detection models for FHB were constructed by
combining two sets of feature variables (WFs and SFs) with three classification methods
(RF, BPNN and PSO-SVM). To better evaluate the accuracy and stability of these detection
models, a 10-fold cross-validation method was used in this study [43,44]. In this method,
the wheat samples were divided into 10 mutually exclusive subsets of similar size. Each
subset was used as a test set, and the remaining 9 subsets of data were used as a training
set. The results of 10 tests were counted to obtain a confusion matrix of the detection model.
Finally, the performance of the detection model was evaluated using sensitivity, kappa
coefficient, specificity and overall accuracy in the confusion matrix.

3. Results and Discussion
3.1. Variations in Reflectance Spectra Due to Fusarium Head Blight

Figure 5 shows the spectral reflectance curves at different disease severities and the
curves of the correlation coefficients between the disease severity and reflectance. As seen
in Figure 5a, the spectral reflectance increased with disease severity, which is why a positive
correlation can be found between disease severity and reflectance in the 350–1000 nm band
range (Figure 5b). In addition, it is obvious that the spectral reflectance of the infected wheat
ears significantly increased in the ranges 450–520 and 582–720 nm, so a high correlation
coefficient can be found in the ranges 450–520 and 582–720 nm. However, the change in
spectral reflectance at wavelengths from 520 to 582 nm was not significant. This result was
obtained because when the pathogen-infected wheat ears, the content of chlorophyll and
carotene in wheat ears was reduced in order to weaken the spectral absorption capacity in
visible regions, so infected wheat ears have higher spectral reflectance than healthy wheat
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ears [45,46]. These results show a change in the reflectance spectra due to FHB, which
indicates the potential of hyperspectral data in FHB detection.
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Figure 5. Reflectance spectrum and correlation curve of normal and diseased samples of wheat ear: (a) reflectance spectrum
of healthy, mild and severe wheat ear samples (350–1000 nm) and (b) correlation coefficient between reflectance and
disease severity.

3.2. Sensitivities to Fusarium Head Blight with Wavelet Features

Based on the data on the hyperspectral reflectance of wheat ears, the correlation
scalogram generated by the application of CWA is shown in Figure 6. In this study, the
threshold of R2, which is the largest 5% in the correlation scalogram, is 0.62. Based on
this threshold, a total of seven wavelet feature regions were selected from the correlation
scalogram. The highest R2 element was retained in each wavelet feature region, which
generated a total of seven WFs for use in FHB detection. The band positions and scales of
these WFs are summarized in Table 2. All of these WFs were distributed at low scales of
two to five, and their bands were generally distributed at pigment absorption positions
in the visible region from 380 to 780 nm, such as blue valley (WF01), blue edge (WF02),
green peak (WF03), yellow edge (WF04), orange edge (WF05) and red edge (WF06, WF07).
These wavelet positions indicate a significant change in the pigment content in the infected
wheat ear [15,17,24]. In addition, the WFs were highly significantly correlated with disease
severity (p < 0.001), and the absolute value of their correlation coefficient with disease
severity was greater than or equal to 0.8. This result shows that wavelet technology has
great potential for FHB spectral detection.
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Table 2. Wavelength positions and scales of identified wavelet features.

WFs Scale Wavelength (nm) R R2 p-Value Peculiarity

WF01 4 474 0.80 0.64 0.000 Blue valley
WF02 1 495 0.81 0.65 0.000 Blue edge
WF03 1 528 −0.84 0.71 0.000 Green peak
WF04 2 582 0.84 0.71 0.000 Yellow edge
WF05 3 615 0.82 0.67 0.000 Orange edge
WF06 1 691 0.80 0.64 0.000 Red edge
WF07 1 738 −0.81 0.65 0.000 Red edge

3.3. Sensitivities to Fusarium Head Blight with Traditional Spectral Features

Table 3 summarizes the correlation coefficients and absolute coefficients of the selected
traditional SFs with disease severity. All 16 selected traditional SFs were highly correlated
with disease severity (p-value < 0.001). Among them, three traditional SFs had absolute
correlation coefficients greater than or equal to 0.8, namely PSRI, SDy and (SDr − SDy)/
(SDr + SDy). PSRI maximizes the sensitivity of the carotenoid to chlorophyll ratio, so it can
capture the change in pigmentation within the wheat ear [34]. SDy, (SDr–SDy)/(SDr+SDy)
were calculated according to the differential spectral reflectance of the yellow and red
edges, which were strongly related to the chlorophyll content [37,47]. Compared with the
wavelet features extracted using CWA (Table 2), the sensitivity to FHB of most traditional
SFs was weaker. This is because CWA statistically analyzes the entire spectrum at different
scales at different locations, so the wavelet features can more sensitively capture changes
in pigment content within an infected wheat ear [48].

3.4. Detection Model of Fusarium Head Blight

Table 4 summarizes the sensitivity, kappa coefficient, specificity and overall accuracy
of all the wheat FHB detection models. Among all the models, the detection model with
WFs combined with the PSO-SVM algorithm gave the highest overall accuracy (93.5%) and
kappa coefficient (0.903). The results show that the CWA-derived wavelet features as input
variables combined with the PSO-SVM algorithm can effectively detect FHB on the wheat
ear scale. In addition, under the same feature variables, the overall accuracy of the detection
model constructed using PSO-SVM is higher than that of the BPNN detection model, while
the overall accuracy of the detection model constructed using RF is the lowest. When WFs
were used as input features, compared to detection models constructed using RF or BPNN
algorithms, the overall accuracy of the detection models built using PSO-SVM improved by
11.1% and 7.4%, respectively, and the kappa coefficients were increased by 0.167 and 0.111,
respectively. The overall accuracy and kappa coefficient of the PSO-SVM detection model
constructed using SFs were 85.2% and 0.778, respectively, which is 6.5% and 2% higher in
the overall accuracy, and the kappa coefficient improved by 0.098 and 0.038 compared to the
RF and BPNN detection models, respectively. In addition, comparing the sensitivity and
specificity of the detection models constructed using the three algorithms, with the same
feature variables, the PSO-SVM detection model had the highest sensitivity and specificity,
the BPNN detection model had the second highest sensitivity and specificity, and the RF
detection model had the lowest sensitivity and specificity. The choice of an appropriate
algorithm to build a model has a significant impact on improving the accuracy of crop
disease detection [49]. Compared to RF and the BPNN, PSO-SVM cleverly solves the
operation of inner product in a high-dimensional space based on a unique kernel function,
thus effectively solving the nonlinear classification issue [19,21]. Moreover, the penalty
factor c and the kernel parameter gamma were optimized via PSO, thus significantly
improving the accuracy of the detection model [21]. Combined with the analysis above, the
PSO-SVM detection model has greater practical significance than the crop disease detection
model constructed by RF or BPNN algorithms.
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Table 3. The correlation between traditional spectral features and disease severity.

Sorting SFs R R2 p-Value

1 PSRI 0.81 0.65 0.000
2 SDy 0.80 0.64 0.000
3 (SDr − SDy)/(SDr + SDy) −0.80 0.64 0.000
4 NRI −0.79 0.63 0.000
5 GI −0.78 0.61 0.000
6 SDb −0.74 0.55 0.000
7 Db −0.74 0.54 0.000
8 NPCI 0.74 0.54 0.000
9 Dep 0.68 0.47 0.000
10 (SDr − SDb)/(SDr + SDb) 0.68 0.47 0.000
11 ARI 0.64 0.41 0.000
12 PHRI −0.62 0.38 0.000
13 SDr/SDb 0.57 0.32 0.000
14 TVI −0.47 0.22 0.000
15 NBNDVI −0.46 0.21 0.000
16 Area −0.34 0.12 0.000

Note: SFs = spectral features.

Table 4. Comparison of results of wheat FHB monitoring models constructed with different features and algorithms.

Algorithm
Input

Features
Predicted Results

Healthy Mild Severe Se (%) Sp (%) OA (%) Kappa

RF

WFs
Healthy 34 4 0 89.5 78.5 82.4 0.736

Mild 4 26 8 68.4 90.0
Severe 0 3 29 90.6 78.9

SFs
Healthy 33 5 0 86.8 74.2 78.7 0.680

Mild 5 25 8 65.8 85.7
Severe 0 5 27 84.4 76.3

BP

WFs
Healthy 34 3 1 89.5 84.2 86.1 0.792

Mild 4 29 5 76.3 85.7
Severe 0 2 30 93.8 82.8

SFs
Healthy 33 4 1 86.8 81.4 83.2 0.750

Mild 5 27 6 71.1 90.0
Severe 0 2 30 93.8 78.9

PSO-SVM

WFs
Healthy 35 2 1 92.1 94.3 93.5 0.903

Mild 0 36 2 94.7 92.9
Severe 0 2 30 93.8 93.4

SFs
Healthy 35 2 1 92.1 81.4 85.2 0.778

Mild 5 27 6 71.1 92.9
Severe 0 2 30 93.8 81.5

Note: Se = sensitivity, OA = overall accuracy, Sp = specificity.

In addition, this study focused on comparing the performance of WFs and SFs for
FHB detection. RF, BPNN and PSO-SVM detection models constructed using WFs as input
features gave overall accuracies of 82.4%, 86.1% and 93.5% with kappa coefficients of 0.736,
0.792 and 0.903, respectively. Compared with the detection models constructed using SFs
as input features, the overall accuracy increased by 3.7%, 2.9% and 8.3%, respectively, and
the kappa coefficients increased by 0.056, 0.042 and 0.125, respectively. The sensitivity
and specificity values of the detection model built using WFs as input features were
higher than those of the detection model built using SFs as input features according to the
same algorithm. These results show that the wavelet features performed better than the
traditional SFs in FHB detection. In the process of WF extraction, CWA analyzed all spectral
wavelengths on different scales, and the sensitivities to FHB of wavelet energy coefficients
on all different scales at different wavelengths were counted and optimal positions and
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scales were achieved [24,25,50]. Therefore, the comprehensive performance of the detection
model built using SFs as input features is worse than the detection model built using WFs
as input features.

However, the CWA method also has limitations. WF extraction using CWA is based
on a global statistical search process and is not a physical process, so generalizing WFs
relies heavily on a uniformly distributed and representative training sample [13,25,51]. In
addition, the effects of the wheat fertility period and variety were not considered. Therefore,
tests of generalizability should be performed, and the stability of results should be strength-
ened in future studies to facilitate the examination of results related to generalizability
and stability.

4. Conclusions

In this study, seven WFs for use in FHB detection were extracted using CWA based on
the reflectance spectral data (350–1000 nm) of wheat ears. The WFs were then combined
with RF, BPNN and PSO-SVM algorithms to build detection models and compared with the
detection models built using 16 traditional SFs as input features. The extracted WFs were
able to effectively detect the severity of FHB, and their sensitivity to FHB was better than
that of SFs. The overall accuracy of the detection models built by the WFs in combination
with the three algorithms (RF, BPNN and PSO-SVM) improved by 3.7%, 2.9% and 8.3%,
respectively, compared to those built using SFs as input features. The overall accuracy and
kappa coefficient of the detection model based on the PSO-SVM algorithm were the highest
with the same input features, which improved by more than 2% and 6% compared to the
BPNN and RF algorithms, respectively. In addition, among all the detection models, the
detection model built using WFs in combination with PSO-SVM had the best performance,
with an overall accuracy of 93.5% and a kappa coefficient of 0.903. This illustrates the
superior performance of CWA and PSO-SVM in regard to FHB detection.
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