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Abstract: An increase in grassland rodent pests in China has seriously affected grassland ecological
environments and the development of husbandry. Here, we used remote sensing data and a species–
environmental matching model to predict the potential spatial distribution of the five major rodent
pest species (Microtus, Citellus, Myospalax, Meriones, Ochotona) in northern China, and examined
how the predicted suitability of the area depends on environmental variables. The results were
consistent and significant, better than random, and close to optimal. Meriones and Microtus had the
largest areas of High Suitability and Moderate Suitability with regard to environmental conditions.
The combination analysis of areas of Moderate Suitability and High Suitability showed that for 66%
of the total area, conditions were suitable for just one rodent species, while conditions suitable for two
and three kinds of rodents accounted for 31% and 3%, respectively. Altitude, land surface temperature
in winter (November, December, February) and summer (May, June, July), vegetation cover in summer
(July, August), and precipitation from spring to summer (April, May, June) determined the spatial
distribution of grassland rodents. Our findings provide a powerful and useful methodological tool for
tracking the five major rodent pest species in northern China and for future management measures
to ensure grassland ecological environment security.

Keywords: environmental factors; Maxent; potential spatial distribution; rodent species; remote
sensing data; suitability

1. Introduction

It is well-established that rodents are a principal vector for many infectious diseases [1–3],
especially zoonotic diseases [1] such as spotted fever group rickettsiae [4], bubonic plague [5],
tick-borne relapsing fever [6], cutaneous leishmaniasis [7], plague associated with the bacillus
Yersinia pestis [8] and leptospirosis [9]. Therefore, an outbreak of rodents has the risk of
transmitting infectious diseases that can threaten human health. In addition, rodents can injure
humans directly through bites [10] and outbreaks can damage grassland ecosystems [8].

Recently, many studies have shown that the number and distribution of rodents
is affected by various environmental factors. For example, studies have demonstrated
strong correlations between landscape composition and fragmentation and the number of
rodents [11]. It has been suggested that a detectable relationship between land cover, vege-
tation index, elevation and rodent abundance could form the basis of rodent monitoring
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systems [12–14]. On the macro scale, climatic conditions and topography have been used
as predictive variables [15–18]. Specific climatic conditions that have a significant impact
on the distribution of rodents [19,20] include precipitation [7,21], drought, temperature,
and humidity [7]. Studies have confirmed that temperature and precipitation are also be
important for the distribution of two rodent species in Mexico [22]. Due to the different
living habits of rodent species, the relationship between rodent species and climatic condi-
tions is affected by regionality and heterogeneity [23]. Plant abundance or coverage can
also be significant predictors [24], and are often reflected by the vegetation index [25].

Meteorological data, land cover type and topographical variables were used to suc-
cessfully identify areas containing the fat dormouse in Iran [26]. Annual precipitation,
temperature, Normalized Difference Vegetation Index (NDVI) and altitude were used to
quantify the impacts on a potential risk zone and the spatial pattern of the Spermophilus
dauricus in China [8]. Climatic variables and NDVI values were combined with a Digital
Elevation Model (DEM) to investigate environmental factors in relation to four rodents in
the Nahuel Huapi National Park [16]. Elevation, bioclimatic variables, NDVI values and
enhanced vegetation indices (EVI) were used to define local conditions associated with
fourteen sigmodontine rodent species inhabiting the Andean Patagonian Forest region
and adjacent areas [27]. Elevation, temperature, precipitation, net primary productivity
and potential evapotranspiration were used as the environmental variables to analyze
the congruence of spatial patterns for species richness and functional diversity of cricetid
rodents in the state of Oaxaca, southern Mexico [28]. Vegetation, biogeographic units,
climate, and disturbance indices were suggested as the predictive variables to identify
environmental conditions associated with the occurrence and abundance of rodents in
French Guiana [23]. Landscape variables (slope and soil composition) and climate variables
(temperature, precipitation and climatic water deficit) were used to predict the future
habitat suitability for an endangered, keystone rodent (Dipodomys ingens, giant kangaroo
rat) in California, USA [29]. In summary, the above studies show that in general, climatic
conditions, topography, land cover or vegetation cover conditions are the most frequently
investigated environmental factors in the simulation of the potential distribution of many
rodent species [26,30,31].

It is worth noting that the availability of environmental data and the development of
computer technology have promoted the rapid growth of species’ environmental suitability
studies and geographical distribution prediction models. Phillips first used the maximum
entropy method (Maxent) to simulate the geographical distribution of species [32]. Maxent
is a general machine learning algorithm, and is suitable for species distribution modeling in
a variety of species [32]. Maxent is also the best model in the face of positioning error [33].
Maxent has been used in the study of the potential distribution of many species, such
as plant species [34,35], primate species [23], bat species [36–38], ungulate species [23],
wolf [39], aquatic species [40], giant kangaroo rat [41], insect species [42,43], and rodent
species [7,8,10,19,20,22–24,26,28,30,42,44–52].

Remote sensing data have been widely used in the study of species distribution [53,54].
For example, remote sensing data were used to interpret and predict the number and
distribution of rodents in agroecosystem habitats [25]. NDVI derived from remote sensing
images was used as a predictor variable to predict the number of rodents in small-scale
agricultural ecosystems [55]. Remote sensing data, such as NDVI, Leaf Area Index (LAI), the
fraction of photosynthetically-active radiation absorbed by vegetation, net photosynthesis,
gross primary productivity and land surface temperature were used as breeding season
indicators to examine the relationships between the dynamics of rodent populations and
environmental conditions [48].

Rodent pests have always been the most significant type of grassland pest in China.
In 2019, the area damaged by grassland rodent pests accounted for 56% of the total area of
grassland vegetation damaged by disease, invasive plants and all pests. The area damaged
by grassland rodent pests was 3.67 million ha in 2019, and 3.45 million ha in 2020 (1.45 mil-
lion ha was seriously damaged, accounting for 42.25% of the total damage area). The five
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main grassland rodent species in northern China are from the Microtus, Citellus, Myospalax,
Meriones, and Ochotona genera. Grassland rodent pests cause grassland degradation and
desertification, further exacerbating the deterioration of grassland environments. However,
current rodent science cannot predict the large-scale spatial distribution of the main rodent
species in the grasslands of northern China. This is partly due to the insufficient application
of remote sensing data coupled with the lack of observed rodent distribution data. The
inability to predict the potential distribution of grassland rodents affects the ability to
control the damage they cause.

In this study, the Maxent algorithm and remote sensing big data were used to develop
species–environmental matching models. These were used to identify the potential distri-
bution of the major five rodents in grassland of northern China and to identify the most
relevant environmental factors that can predict the distribution of the five major grassland
rodents. Our ultimate objective is to provide early warning of rodent damage to grasslands,
and hence guide future management and decision-making.

2. Materials and Methods
2.1. Study Area

The study area covers four provinces of northern China, i.e., Inner Mongolia, Ningxia,
Gansu and Xinjiang (Figure 1). These four provinces are located in the north and west of
China and account for 40% of China’s grassland. The grassland in Inner Mongolia accounts
for 20.1%, Xinjiang’s grassland accounts for 14.6%, Gansu’s grassland accounts for 4.6%
and Ningxia’s grassland accounts for 0.8%. Climate types vary within the study area and
are mainly of the temperate continental climate and alpine climate types, while only a few
areas in the southeast have temperate monsoon climates, characterized by aridity with
sparse precipitation and a decreasing precipitation trend from east to west. The main
geomorphological types are Loess Plateau, Gobi Desert, and Desert. Vegetation types
mainly include desert vegetation, Stipa grass, Leymus chinensis grass and weedy grass.
The soil types mainly include meadow soils, Chernozems, Castanozems, cultivated loessial
soils, dark loessial soils, sierozems, aeolian sandy soils, brown desert soils, brown earths
and gray desert soils.

In our study area, the total area damaged by grassland rodent pests accounts for 61.5%
of all such damaged grasslands in China. In Xinjiang province, 17.8% of the grassland has
been damaged by rodent pests, 13.8% in Inner Mongolia, 12.1% in Gansu province, and 1%
in Ningxia province. Grassland rodent pests have seriously limited agricultural production
and endangered residents’ health in the four provinces. In 2020, the average mouse hole
density for Myospalax in the area exceeded 300/ha, and in some areas, it exceeded 1000/ha.
The highest mouse hole density exceeded 2500/ha in Hezuo City in Gansu, which caused
serious damage to grassland. The average effective mouse hole density for Meriones in
their main occurrence area can reach 200–300/ha. The average mouse hole density for
Ochotona in their occurrence area exceeded 200/ha, and in some areas, it exceeded 600/ha
with the highest mouse hole density exceeding 2000/ha. The average effective mouse hole
density for Microtus in their main occurrence area reached 1000/ha. In order to prevent
and control grassland rodent pests, grassland pest control stations are located at county
level and are supervised by the National Forestry and Grassland Administration of China’s
Central Government. This organization is also responsible for monitoring and reporting
the area of grassland damaged by rodent pests.

2.2. Research Framework

This study was performed in three steps (Figure S1). First, the habitat suitability
factors were obtained from the meteorological and remote sensing indicators based on the
analysis of the main factors affecting the occurrence of rodents, such as topography (alti-
tude, slope), meteorology (land surface temperature, precipitation), vegetation (vegetation
type, vegetation index), soil (soil type, soil texture). Then, habitat suitability factors and
observational occurrence data were input into the machine learning model (Maxent) to
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model, validate and extract the areas suitable for rodents at the class level. Finally, the
ROC curve, percent variable contribution and response curve were analyzed to identify
the impacts of habitat suitability factors on rodents’ occurrence. The key technologies and
methods used in our study are described below.
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2.3. Rodent Species Occurrence Data

Rodent species occurrence records for 2020 were obtained from the Forest and Grass-
land Pest Control Station of the National Forestry and Grassland Administration of China
(http://www.forestry.gov.cn/, accessed on 21 June 2021). Occurrence records for the five
main rodent species (Microtus, Citellus, Myospalax, Meriones, Ochotona) consist of the
occurrence area size and location, including four levels of location information: province,
city, county and township (Figure S2).

More precise geographic grassland data were obtained from GlobCover (Global Land
Cover Map) 2009, which were downloaded from EAS (http://due.esrin.esa.int/globcover/,
accessed on 10 October 2020). The original GlobCover data originated from the ENVISAT
satellite and were obtained using the MERIS (medium-resolution imaging spectrometer)
remote sensor. High-quality images received from 1 January to 31 December of 2009
were selected for image synthesis. To reduce spatial autocorrelations, grassland data
were spatially filtered with a radius of 5 km using SDMtoolbox 2.0 (Version 2.4, created
by Jason L. Brown, Durham, NC, USA. Python-based GIS toolkit for species distribution
model analyses), and the rodent occurrence sites was randomly assigned to the grassland
locations in the observed rodent occurrence areas [56].

2.4. Environmental Factors from Remote-Sensing Big Data

We used four types of environmental variables to analyze habitat suitability including
topography, meteorology, vegetation and soil (Table S1). In total, 26 environmental variables
(some variables included the status of multiple months) were extracted.

http://www.forestry.gov.cn/
http://due.esrin.esa.int/globcover/
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Topographic data, including altitude and slope with a spatial resolution of 90 m,
were obtained from China’s Geospatial Data Cloud (http://www.gscloud.cn/, accessed on
5 November 2020).

Meteorological data, including land surface temperature with a spatial resolution of
1 km and precipitation with a spatial resolution of 5 km, were obtained from Google Earth
Engine (https://earthengine.google.com/, accessed on 20 June 2021). The land surface tem-
perature data used “MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day
Global 1 km” products (https://lpdaac.usgs.gov/products/mod11a2v006/, accessed on
20 June 2021). Monthly land surface temperature from the period November 2019 to
July 2020 were extracted, which covered the overwintering, growth and breeding pe-
riod of the target rodent species. The precipitation data used “CHIRPS Daily: Climate
Hazards Group InfraRed Precipitation with Station Data (Version 2.0 Final)” products
(https://chc.ucsb.edu/data/chirps, accessed on 20 June 2021). Data from the period from
April 2020 to July 2020 were extracted, which covered the growth and breeding period of
the five rodent species.

Vegetation data, including vegetation type and the Normalized Difference Vegeta-
tion Index (NDVI) with a spatial resolution of 1 km, were obtained from China’s Re-
source and Environment Science and Data Center (https://www.resdc.cn/, accessed on
11 July 2019) and Google Earth Engine (https://earthengine.google.com/, accessed on
20 June 2021), respectively. The NDVI data used “MOD13A2.006 Terra Vegetation Indices
16-Day Global 1 km” products (https://lpdaac.usgs.gov/products/mod13a2v006/, ac-
cessed on 20 June 2021). Monthly NDVI data from the periods August to October 2019 and
April to July 2020 were extracted, which covered the food storage, growth and breeding
period of the study rodent species.

Soil factors were considered, including soil type, 0–5 cm sand content and 0–5 cm clay
content with a spatial resolution of 1 km. These showed no significant differences between
months. The soil data was downloaded from China’s Resource and Environment Science
and Data Center (https://www.resdc.cn/, accessed on 1 April 2019).

All environmental variable data used in this study were either at 1 km resolution
or were resampled to 1 km resolution using the nearest-neighbor method. To avoid
strong collinearity between variables, we retained the variables with Pearson correlation
coefficients of less than 0.9. A batch processing code based on Python in ArcGIS was used
to pre-process to a unified data coordinate system, spatial resolution and data analysis
range, so as to facilitate the subsequent modeling analysis.

2.5. Maxent Modeling and Validation

Maximum entropy species distribution modeling (Maxent) has proven to be effective
for predictively modeling species’ niches and distributions, using small or large sample
sizes [36,54]. The Maxent model only requires the georeferenced species’ occurrence
records and uses a set of environmental (e.g., climatic) grids in the study area. The model
is nonparametric, allows for nonlinearities, and can automatically calculate interactions
among predictor variables [54]. The output of the model is probabilistic, and the probability
of presence can be interpreted in terms of relative potential spatial distribution (0 being the
lowest and 1 the highest) [36].

Maxent version 3.4.1 (downloaded from the American Museum of Natural History, https:
//biodiversityinformatics.amnh.org/open_source/maxent/, accessed on 1 September 2020)
was used to model the potential spatial distribution of suitable environmental conditions
for the five major rodent species in northern China and study the relevant environmental
factors. The Maxent model formula in our analysis was as follows [54]:

Pw(y|x) =
1

Zw(x)
exp

(
∑n

i=1 wi fi(x, y)
)

(1)

Zw(x) = ∑y exp
(
∑n

i=1 wi fi(x, y)
)

(2)

http://www.gscloud.cn/
https://earthengine.google.com/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://chc.ucsb.edu/data/chirps
https://www.resdc.cn/
https://earthengine.google.com/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://www.resdc.cn/
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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where x represents each input environmental variable, y is the grassland location of the
five major rodent species, fi(x, y) is the characteristic function, wi is the weight of the
characteristic function, n represents the number of datasets, and Pw(y|x) is the output of
the potential spatial distribution for the five major rodent species in northern China.

The ‘subsample’ routine was used for replicate runs of the Maxent model with 50 repli-
cate runs. Seventy percent of the randomly selected rodent species occurrence data were
used for model training and 30% for model testing in each run. The convergence threshold
was set to 0.5 in each run. The training process ended once the log loss per iteration dropped
below the threshold. Predictions from 50 replicate Maxent model runs were averaged to
produce the final maps of the potential spatial distribution of the five major rodent species
in northern China.

The area under the receiver operating characteristic (ROC) curve (AUC) was used to
evaluate the accuracy of the model. In the ROC curves, sensitivity is known as the true
positive rate and represents the absence of omission error, while the quantity 1 − specificity
is known as the false positive rate and represents the commission error [32,57,58]. The
value range of AUC varies from 0.5 to 1 (with 0.5 indicating a random model and close to
1 representing high discrimination) [32,57,58]. The true skill statistic (TSS) was also used
to validate the performance of the models. The formula of TSS is ‘sensitivity + specificity
– 1’ and the values vary between −1 and 1; a value closer to 1 indicates that the model is
better [59,60]. Meanwhile, the ‘Percent variable contributions’ and ‘Jackknife estimation’
routines were selected to evaluate the relative importance of environmental variables to
the habitat suitability for the five major rodent species. The ‘Response Curve’ routine was
also used to examine the relationships between different environmental predictor variables
and the probability of the presence of the five major rodent species [57,58].

3. Results
3.1. The Potential Suitable Distribution of Five Major Rodents in Northern China

Figure S3 shows the ROC curve of all five Maxent models. The final Maxent models for
the five rodent species produced highly predictive results with average test AUC values of
0.96 (Microtus), 0.93 (Citellus), 0.96 (Myospalax), 0.92 (Meriones) and 0.99 (Ochotona) [30].
The value of the TSS was 0.86 (Microtus), 0.88 (Citellus), 0.85 (Myospalax), 0.77 (Meriones)
and 0.93 (Ochotona) (Table 1). The TSS showed more variation between the five rodent
species than the AUC. All the TSS values were larger than 0.7, which indicated that the
performance of the five models was fair [60].

Table 1. The AUC and TSS of all Maxent models for five rodents.

Maxent Models AUC TSS

Microtus 0.96 0.86
Citellus 0.93 0.88

Myospalax 0.96 0.85
Meriones 0.92 0.77
Ochotona 0.99 0.93

To quantify the potential spatial distribution of Microtus, Citellus, Myospalax, Meri-
ones and Ochotona, the degree of environmental suitability was classified at four levels:
High Suitability (HS) (predicted probability > 0.75), Moderate Suitability (MS) (predicted
probability ranged from 0.5 to 0.75), Low Suitability (LS) (predicted probability ranged
from 0.25 to 0.5), and Unsuitable (US) (predicted probability ranged from <0.25) [3,8]. The
prediction results for all five rodent species are shown in Figure 2. The Microtus Max-
ent model predicted MS and HS environmental conditions for Microtus in parts of the
northeastern, central and southwestern grasslands of northern China. For Citellus, MS
and HS environmental conditions were predicted in the southeast, for Myospalax in the
northeast and southwest, for Meriones in the central grasslands, and for Ochotona in the
southwestern grasslands of northern China.
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pest rodent species based on the Maxent modeling.

The proportions of the four suitability categories for the five rodent species Maxent
models are shown in Table 2. The area of HS conditions for Meriones was 29,370 km2

(0.71% of study area), for Citellus it was 21,707 km2 (0.53% of study area), for Microtus,
13,216 km2 (0.32% of study area), for Myospalax, 12,568 km2 (0.31% of study area), and
for Ochotona, 8112 km2 (0.2% of study area). The area of MS conditions for Microtus was
386,754 km2 (9.39% of study area), for Meriones, 278,004 km2 (6.75% of study area), for
Citellus, 111,910 km2 (2.72% of study area), for Myospalax, 96,585 km2 (2.35% of study
area), and for Ochotona, 20,616 km2 (0.5% of study area). In summary, Meriones and
Microtus had the largest area of MS and HS environments. Myospalax and Citellus had the
second largest area of MS and HS environments and Ochotona had the smallest area.

We also conducted a combination analysis of the total MS and HS potential spatial
distributions for all five rodent species in order to identify environmental conditions that
were suitable for multiple rodent species. There were, at most, three rodent species with
suitable conditions at the same time and in the same area. Quantitatively, environmental
suitability for just one species of rodent accounted for 66% of the total MS and HS potential
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environment distribution, while suitability for two and three species of rodents accounted
for 31% and 3%, respectively.

Table 2. The proportions of four environmental suitability categories based on Maxent modeling for
five rodent species.

Rodent Species
HS MS LS US

Proportion Area/km2 Proportion Area/km2 Proportion Area/km2 Proportion Area/km2

Microtus 0.32% 13,216 9.39% 386,754 25.05% 1,031,401 65.24% 2,686,409
Citellus 0.53% 21,707 2.72% 111,910 5.49% 225,863 91.27% 3,758,300

Myospalax 0.31% 12,568 2.35% 96,585 5.21% 214,502 92.14% 3,794,125
Meriones 0.71% 29,370 6.75% 278,004 17.14% 705,678 75.40% 3,104,728
Ochotona 0.20% 8112 0.50% 20,616 0.77% 31,782 98.53% 4,057,270

3.2. Environmental Variable Importance Analysis on Habitat Suitability

Estimates of the relative importance and relative contributions of each of the environ-
mental variables showed that average land surface temperature in November 2019, and
altitude and average land surface temperature in June 2020 had the most predictive power
in the Microtus Maxent model (i.e., a higher permutation importance value, see Table S2A;
i.e., higher training gains and test AUC values, see Figure S4A). Average land surface tem-
perature in February 2020, soil type, average land surface temperature in December 2019
and altitude also highly influenced the final Microtus Maxent model, with contributions of
33.2%, 15.5%, 11% and 10%, respectively.

The average land surface temperature in July 2020, average land surface temperature
in February 2020 and altitude had the most predictive power in the Citellus Maxent model
(see Table S2B; Figure S4B). The average land surface temperature in December 2019, vege-
tation type, soil type and average precipitation in May 2020 also highly influenced the final
Citellus Maxent model, with contributions of 20.9%, 18.1%, 17.6% and 14.2%, respectively.

The altitude had the most predictive power in the Myospalax Maxent model (see Table S2C;
Figure S4C). Altitude, average NDVI in August 2019 and vegetation type also highly
influenced the final Myospalax Maxent model, with contributions of 23.8%, 12.8% and
10.7%, respectively.

The average land surface temperature in July 2020, average land surface temperature
in May 2020 and average NDVI in July 2020 had the most predictive power in the Meriones
Maxent model (see Table S2D; Figure S4D). Altitude, vegetation type, average precipitation
in April 2020, average land surface temperature in November 2019 and soil type also highly
influenced the final Meriones Maxent model, with contributions of 18.7%, 15.9%, 14.9%,
11.2% and 10.7%, respectively.

The average land surface temperature in May 2020 and average precipitation in
June 2020 had the most predictive power in the Ochotona Maxent model (see Table S2E;
Figure S4E). Altitude, average precipitation in April 2020, soil type, vegetation type and
average precipitation in May 2020 also highly influenced the final Ochotona Maxent model,
with contributions of 32.7%, 16.1%, 13.2%, 12.7% and 11.7%, respectively.

Overall, the jackknife test showed that vegetation type and soil type were general
influential predictors in Maxent modeling for the potential spatial distribution of suitable
environments for all five rodent species in northern China.

3.3. Response Curves of the Top Four Environmental Variables

Individual response curves describing the relationships between environmental suit-
ability for all five major rodents and the top predictor variables are shown in Figure S5.
The top five environmental predictors with the highest independent training gain in the
Microtus Maxent model were altitude, average land surface temperature in June 2020,
average land surface temperature in November 2019, average land surface temperature
in February 2020 and average land surface temperature in December 2019 (Figure S5A).
The response curve for altitude showed a peak probability of suitable Microtus habitat
at about 550 m and then had a decreasing probability. The response curve showed that
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the probability of suitable environments for Microtus increased to the highest value when
the average land surface temperature in June 2020 was 26 ◦C, and when the average land
surface temperature in November 2019 was −15 ◦C, and the average land surface tem-
perature in February 2020 was −24.5 ◦C, and then declined. The response curve for the
average land surface temperature in December 2019 showed a high probability of suitable
Microtus conditions when the temperature was lower than −27.5 ◦C and then a rapidly
decreasing probability.

The top five environmental predictors in the Citellus Maxent model were altitude,
average land surface temperature in July 2020, average land surface temperature in
February 2020, average land surface temperature in December 2019 and average precipita-
tion in May 2020 (Figure S5B). The response curve for altitude showed a peak probability of
environmental conditions suitable for Citellus at about 200 m. The probability of suitable
Citellus conditions had the highest value when the average land surface temperature in
July 2020 was between 22.5 ◦C and 28.5 ◦C, and when the average land surface temperature
in February 2020 was −5 ◦C, and when the average land surface temperature in December
2019 was−19 ◦C and with a high value between−23 ◦C and−18 ◦C, and when the average
precipitation in May 2020 was between 1 mm/day and 1.8 mm/day.

The top two environmental predictors in the Myospalax Maxent model were altitude
and average NDVI in August 2019 (Figure S5C). The response curve for altitude showed
two peak probabilities of suitable conditions for Myospalax presence when the altitude
was about 720 m and ranged between 3310 m and 3470 m. The response curve for the
average NDVI in August 2019 showed that the probability of suitable Myospalax conditions
increased to the highest value when the NDVI was 0.74, and then rapidly decreased.

The top six environmental predictors in the Meriones Maxent model were average
NDVI in July 2020, average land surface temperature in May 2020, average land surface
temperature in July 2020, altitude, average precipitation in April 2020 and average land
surface temperature in November 2019 (Figure S5D). The response curve for average NDVI
in July 2020 showed that the peak probability of suitable environmental conditions for
Meriones appeared between 0.37 and 0.47. The response curve for the average land surface
temperature in May 2020 showed that the highest probability presented between 17 ◦C and
27.5 ◦C. The response curve for average land surface temperature in July 2020 showed a
high probability of suitable Meriones conditions when the temperature was higher than
25 ◦C, with the highest probability at 39 ◦C. The response curve for altitude showed the
peak probability of conditions suitable for Meriones when the altitude was about 1308 m.
The response curve for average precipitation in April 2020 showed a peak probability
of environmental conditions suitable for Meriones where evaporation was greater than
precipitation. The response curve for the average land surface temperature in November
2019 showed a peak probability of conditions suitable for Meriones when the temperature
was about 4 ◦C and with a high value between −6 ◦C and 4 ◦C.

The top five environmental predictors in the Ochotona Maxent model were aver-
age precipitation in June 2020, average land surface temperature in May 2020, altitude,
average precipitation in April 2020 and average precipitation in May 2020 (Figure S5E).
The response curve for average precipitation in June 2020 showed a peak probability of
suitable environmental conditions for Ochotona at about 9 mm/day and a second-highest
probability at about 1 mm/day. The response curve showed the highest probability of
suitable Ochotona conditions when the average land surface temperature in May 2020 was
between 2 ◦C and 12 ◦C, when the altitude was 3460 m, when the average precipitation
in April 2020 was 0.1 mm/day and 1.6 mm/day, and when the average precipitation in
May 2020 was 0.6 mm/day.

4. Discussion
4.1. Innovations and Caveats

Grassland rodent pests have always had the most significant impact amongst grassland
vegetation diseases, pests and poisonous weeds in China and have extensively endangered
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agricultural and human health in northern China. However, the large-scale monitoring of
the main grassland rodent pests in China and the effects of related environmental factors
on their distribution have not been well studied. The vast grassland area in northern
China is characterized by a temperate continental climate, temperate continental monsoon
climate, and an alpine climate, with spatial differences in temperature and precipitation,
and large fluctuations in altitude and vegetation coverage. This has made it difficult to
conduct research on the distribution of grassland rodents. In this study, compared with
traditional research on rodents’ distribution based on meteorological data [20,45,49,52], we
have constructed index systems to predict distribution and environmental suitability and
models for five rodent species mainly based on remote sensing data, which was innovative
in integrating machine learning, remote sensing and GIS technologies. Besides, this study
comprehensively considered 26 environmental variables corresponding to four categories
(topography, meteorological, vegetation, and soil) based on a large number of studies,
statistical results and the theoretical analysis of the rodents’ life cycle, whereas previous
studies have mostly considered a single factor (such as meteorological) or a small number
of factors that affect the suitability for grassland rodents [29,49,52].

We have achieved the goal of predicting rodents’ distribution and improved our
understanding of the most suitable environmental conditions for rodent species by using
an integrated method. Maxent modeling based on remote sensing data provided a good first
approximation of the potential distribution of the five main rodents in northern China and
the key environmental factors. Remote sensing data provided meaningful and significant
contributions to modeling and explaining the potential spatial distributions. The main
contributions of remote sensing data were the improvement in the spatial and temporal
resolution, expansion of the spatial scale, and provision of directly related environmental
data. The tests of the species–environmental matching models showed that the predictions
derived from remote sensing data had reasonable distribution patterns, and provided
confidence in the modeled potential spatial distributions of rodents. Our research also
provided a methodological tool for early warning and the efficient prevention and control
of damage by grassland rodents, as well as providing a basis for decision-making for
future management measures to ensure national ecological environment security and the
sustainable development of husbandry.

The advantage of remote sensing data over other data is that these remote sensing
products can be expanded to provide higher accuracy. Furthermore, improved spatial
resolution of satellite observations can help with the identification of species’ environmental
requirements, and the microwave products and reduced-scale remote sensing data can
be added into the model. In the future, remote sensing data will be more effective in
supporting the prevention and control of grassland rodent pests, such as, by monitoring
the severity of damage caused by grassland rodent pests based on biomass changes in
damaged area or by narrowing the scope of control through remote sensing inversion of
high probability occurrence area.

However, the species–environmental matching models may be unstable in space and
time due to the following error and bias effects in the study: (i) internal error or inaccuracies
related to rodent occurrence locations; (ii) misreporting or failure to report rodent occur-
rence; (iii) resolution of predictor environmental variables; and (iv) error or inaccuracies of
predictor environmental variables derived from remote sensing inversion methods. Gen-
erally, accuracy assessment was conducted with complete species occurrence data rather
than similarly limited (e.g., few or biased) test data [55]. Recent research has suggested that
rodent occurrence data reported by citizens can provide reliable predictions and estimates
of habitat relationships to advance efforts to predict potential rodent distributions [61].

4.2. Environmental Factors

Our results showed that 12 of the 26 environmental factors considered by the Maxent
models were strongly associated with the potential spatial distribution of the five major
rodents in northern China (Figure S5), thus supporting the hypothesis that environmental
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conditions might restrict the distribution of the five major rodents in northern China. In
summary, altitude, land surface temperature in winter (November, December, February)
and summer (May, June, July), vegetation cover in summer (July, August), precipitation
from spring to summer (April, May, June) determine the spatial distribution of grassland
rodents and affect the spatial heterogeneity of rodents’ distribution. Moreover, vegetation
type and soil type are general influential predictors in the Maxent modeling of the potential
spatial distribution for all five rodent species in northern China. The response curves indi-
cated that each kind of rodent has its own unique environmental conditions that are most
suitable for growth and survival, such as altitude range, surface temperature, precipitation
and vegetation richness over a few months. Our study confirms that meteorological factors
have an important effect on the suitability of the habitat for grassland rodents, but the
influence of other environmental factors, such as topography, vegetation and soil type, also
needed to be considered. The results of our modeling have been shown to outperform
other studies, which mostly considered a single factor (such as meteorological) or a small
number of factors that impact on the suitability of the environment for grassland rodents,
and also other ecological niche modeling (ENM) models such as GARP and BIOCLIM [62].

Compared with other studies [8], this study not only constructed the index system
and model for rodents’ environmental suitability, but also analyzed and compared the
similarities and differences in the environmental conditions for five main rodent species in
northern China. The relative importance and contributions of the environmental variables
and the jackknife analysis illustrated that the greatest predictive environmental variables
for each rodent in the Maxent model are different. For Microtus, temperature in early-
winter and mid-summer had the most predictive power and the greatest impact on its
potential spatial distribution. For Citellus, temperature in late-winter and mid-summer
had the greatest impacts on its potential spatial distribution. For Myospalax, altitude had
the greatest impact on its potential spatial distribution. For Meriones, temperature and
the vegetation richness in mid-summer had the most predictive power, and for Ochotona,
temperature and precipitation in early-summer had the greatest impacts on its potential
spatial distribution.

Microtus and Citellus were more sensitive to temperature, Myospalax was more
sensitive to altitude, Meriones was more sensitive to both temperature and vegetation, and
Ochotona was more sensitive to temperature and precipitation. A reasonable explanation
is that Microtus and Citellus are generally distributed in areas with richer vegetation, so
the temperatures in the overwintering and summer breeding period have the greatest
impacts on the distribution of these rodents. Meriones generally live in sandy areas,
so vegetation and temperature together affect these rodents’ distribution. Ochotona are
mainly distributed on the plateau with less precipitation, so their distribution is significantly
affected by temperature and precipitation.

A comprehensive understanding of the environmental conditions favored by the five
major rodents in northern China will be important for managing the damage caused by
the rodents, because management and conservation actions, such as the institution of
precautions, can be prioritized to focus on areas where the potential for the presence of
rodents is highest. Moreover, clearly defining the environmental conditions will help us
determine whether the management actions on rodents’ damage (e.g., the institution of
universal precautions) are likely to be inefficient. Furthermore, our findings could be
the basis for further research (e.g., assessing losses of grassland ecosystem services and
husbandry, evaluating the risk of plague and predicting the impacts of global climate
change on the grassland rodents).

5. Conclusions

This study produced a map of the potential presence of rodents with high probability,
and also identified the suitable environmental factors for the five major grassland rodent
pests (Microtus, Citellus, Myospalax, Meriones, Ochotona) in northern China using the
Maxent and remote sensing big data. Our study shows that Meriones and Microtus had
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the largest areas of High Suitability and Moderate Suitability with regard to environmental
conditions within the study region. Myospalax and Citellus had the second largest areas
of High Suitability and Moderate Suitability but this was a relatively agglomerate area.
Ochotona had the smallest area of High Suitability and Moderate Suitability. The combi-
nation analysis of the areas of Moderate Suitability and High Suitability environmental
conditions showed that for 66% of the total area, the conditions were suitable for just one
rodent species, while conditions suitable for two and three kinds of rodents accounted for
31% and 3%, respectively. This suggests that 97% of the rodents’ potential distribution
areas in the grassland of northern China have less than two rodent species present at the
same time, due to the different environments. The altitude, land surface temperature in
winter (November, December, February) and summer (May, June, July), vegetation covers
in summer (July, August), precipitation from spring to summer (April, May, June) mainly
determine the spatial distribution of grassland rodents and affect the spatial heterogeneity
of rodents’ distribution. Our study confirms that meteorological factors are significant in
assessing the suitability of the environment for grassland rodents, but other environmental
factors (topography, vegetation and soil) also need to be taken into consideration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14092168/s1, Figure S1: Flowchart of this study; Figure S2: The
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for five rodents; Figure S4: Environmental variable contributions to (a) training gain and (b) AUC
of the Maxent model for Microtus (A), Citellus (B), Myospalax (C), Meriones (D), Ochotona (E);
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